- -

Light Detection and Ranging for Implementing Water-Oriented Forest Management in a Semiarid Sub-Catchment (Valencia, Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Light Detection and Ranging for Implementing Water-Oriented Forest Management in a Semiarid Sub-Catchment (Valencia, Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manrique Alba, Ángela es_ES
dc.contributor.author Campo García, Antonio Dámaso del es_ES
dc.contributor.author GONZÁLEZ-SANCHIS, MARÍA DEL CARMEN es_ES
dc.date.accessioned 2017-06-14T07:19:02Z
dc.date.available 2017-06-14T07:19:02Z
dc.date.issued 2015-11
dc.identifier.issn 1863-0650
dc.identifier.uri http://hdl.handle.net/10251/82809
dc.description.abstract [EN] Diminishing rainfall interception in semiarid forests may offset reductions of available water either for ecosystem or human needs under the climate change predictions. Forest managers should be aware of this issue and develop specific hydrology-oriented silvicultural treatments. In this sense, relating forest-water processes to detailed forest structure information, as provided by light detection and ranging (LiDAR), is essential. In this study, low-density LiDAR data are used to characterize forest structure and throughfall water. First, LiDAR was validated as an estimator of the forest structure variables (canopy cover, canopy height, and leaf area index) in a semiarid forest, with acceptable root mean square errors (6.2% cover, 0.4m(2)m(-2) LAI and 0.7m height). Secondly, the LiDAR-derived variables were related to the measured throughfall by means of simple and multiple regression models. The best model included canopy cover and stand height, and improved upon previous results based on field measures from r(2) = 0.76-0.95. Finally, the model was used to estimate the throughfall in the whole sub-catchment, where very low or low throughfall (<74%) was identified in 47.5% of the area. Low-density LiDAR was proved to be useful in guiding hydrology-oriented silviculture to increase the amount of throughfall water. es_ES
dc.description.sponsorship This study is a part of research projects: "CGL2011-28776-C02-02, HYDROSIL", "CGL2014-58127-C3-2, SILWAMED," funded by the Spanish Ministry of Science and Innovation and FEDER funds, and " Determination of hydrologic and forest recovery factors in Mediterranean forests and their social perception", supported by the Ministry of Environment, Rural and Marine Affairs. The authors are grateful to M. Fabra for his early support on this work and to the Valencia Regional Government for allowing the use of the experimental forest of La Hunde. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof CLEAN - Soil, Air, Water es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adaptive silviculture es_ES
dc.subject Green/Blue water es_ES
dc.subject Pinus halepensis es_ES
dc.subject Throughfall es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Light Detection and Ranging for Implementing Water-Oriented Forest Management in a Semiarid Sub-Catchment (Valencia, Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/clen.201400871
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-02/ES/CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Manrique Alba, Á.; Campo García, ADD.; González-Sanchis, MDC. (2015). Light Detection and Ranging for Implementing Water-Oriented Forest Management in a Semiarid Sub-Catchment (Valencia, Spain). CLEAN - Soil, Air, Water. 43(11):1488-1494. https://doi.org/10.1002/clen.201400871 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/clen.201400871 es_ES
dc.description.upvformatpinicio 1488 es_ES
dc.description.upvformatpfin 1494 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 307375 es_ES
dc.identifier.eissn 1863-0669
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Medio Ambiente y Medio Rural y Marino
dc.description.references B. Fady H. Semerci G. G. Vendramin Technical Guidelines for Genetic Conservation and Use for Aleppo Pine (Pinus halepensis) and Brutia Pine (Pinus brutia) 2003 es_ES
dc.description.references J. Fitzgerald J. B. Jacobsen K. Blennow B. J. Thorsen M. Lindner Climate Change in European Forests: How to Adapt European Forest Institute Policy Brief 9 2013 es_ES
dc.description.references Falkenmark, M. (2003). Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1440), 2037-2049. doi:10.1098/rstb.2003.1386 es_ES
dc.description.references Ganatsios, H. P., Tsioras, P. A., & Pavlidis, T. (2010). Water yield changes as a result of silvicultural treatments in an oak ecosystem. Forest Ecology and Management, 260(8), 1367-1374. doi:10.1016/j.foreco.2010.07.033 es_ES
dc.description.references Ungar, E. D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., & Schiller, G. (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. Forest Ecology and Management, 298, 39-51. doi:10.1016/j.foreco.2013.03.003 es_ES
dc.description.references Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7 es_ES
dc.description.references Molina, A. J., & del Campo, A. D. (2012). The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 269, 206-213. doi:10.1016/j.foreco.2011.12.037 es_ES
dc.description.references Jebamalar, A., Ravikumar, G., & Meiyappan, G. (2012). Groundwater Storage through Rain Water Harvesting (RWH). CLEAN - Soil, Air, Water, 40(6), 624-629. doi:10.1002/clen.201100517 es_ES
dc.description.references Pirotti, F. (2011). Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods. iForest - Biogeosciences and Forestry, 4(3), 100-106. doi:10.3832/ifor0562-004 es_ES
dc.description.references Roth, B. E., Slatton, K. C., & Cohen, M. J. (2007). On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Frontiers in Ecology and the Environment, 5(8), 421-428. doi:10.1890/060119.1 es_ES
dc.description.references Carlyle-Moses, D. E., & Gash, J. H. C. (2011). Rainfall Interception Loss by Forest Canopies. Ecological Studies, 407-423. doi:10.1007/978-94-007-1363-5_20 es_ES
dc.description.references Strunk, J., Temesgen, H., Andersen, H.-E., Flewelling, J. P., & Madsen, L. (2012). Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Canadian Journal of Remote Sensing, 38(5), 644-654. doi:10.5589/m12-052 es_ES
dc.description.references González-Ferreiro, E., Diéguez-Aranda, U., & Miranda, D. (2012). Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry: An International Journal of Forest Research, 85(2), 281-292. doi:10.1093/forestry/cps002 es_ES
dc.description.references Farid, A., Goodrich, D. C., Bryant, R., & Sorooshian, S. (2008). Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates. Journal of Arid Environments, 72(1), 1-15. doi:10.1016/j.jaridenv.2007.04.010 es_ES
dc.description.references Mitchell, P. J., Lane, P. N. J., & Benyon, R. G. (2011). Capturing within catchment variation in evapotranspiration from montane forests using LiDAR canopy profiles with measured and modelled fluxes of water. Ecohydrology, 5(6), 708-720. doi:10.1002/eco.255 es_ES
dc.description.references Varhola, A., & Coops, N. C. (2013). Estimation of watershed-level distributed forest structure metrics relevant to hydrologic modeling using LiDAR and Landsat. Journal of Hydrology, 487, 70-86. doi:10.1016/j.jhydrol.2013.02.032 es_ES
dc.description.references J. Monzó-Millán M. Eng. Thesis 2009 es_ES
dc.description.references E. Calabuig-Vila M. Eng. Thesis 2012 es_ES
dc.description.references R. J. McGaughey FUSION/LDV: Software for LIDAR data analysis and visualization 2009 es_ES
dc.description.references Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115(4), 1065-1080. doi:10.1016/j.rse.2010.12.011 es_ES
dc.description.references Sobrino, J. A., Oltra-Carrió, R., Sòria, G., Bianchi, R., & Paganini, M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, 50-56. doi:10.1016/j.rse.2011.04.042 es_ES
dc.description.references Llorens, P., & Domingo, F. (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335(1-2), 37-54. doi:10.1016/j.jhydrol.2006.10.032 es_ES
dc.description.references Smith, A. M. S., Falkowski, M. J., Hudak, A. T., Evans, J. S., Robinson, A. P., & Steele, C. M. (2009). A cross-comparison of field, spectral, and lidar estimates of forest canopy cover. Canadian Journal of Remote Sensing, 35(5), 447-459. doi:10.5589/m09-038 es_ES
dc.description.references Hopkinson, C., & Chasmer, L. (2009). Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113(1), 275-288. doi:10.1016/j.rse.2008.09.012 es_ES
dc.description.references Riaño, D., Valladares, F., Condés, S., & Chuvieco, E. (2004). Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 124(3-4), 269-275. doi:10.1016/j.agrformet.2004.02.005 es_ES
dc.description.references Nilsson, M. (1996). Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56(1), 1-7. doi:10.1016/0034-4257(95)00224-3 es_ES
dc.description.references Hyyppa, J., Kelle, O., Lehikoinen, M., & Inkinen, M. (2001). A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing, 39(5), 969-975. doi:10.1109/36.921414 es_ES
dc.description.references Richardson, J. J., Moskal, L. M., & Kim, S.-H. (2009). Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology, 149(6-7), 1152-1160. doi:10.1016/j.agrformet.2009.02.007 es_ES
dc.description.references Peduzzi, A., Wynne, R. H., Fox, T. R., Nelson, R. F., & Thomas, V. A. (2012). Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. Forest Ecology and Management, 270, 54-65. doi:10.1016/j.foreco.2011.12.048 es_ES
dc.description.references Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x es_ES
dc.description.references BEVEN, K. (1997). TOPMODEL: A critique. Hydrological Processes, 11(9), 1069-1085. doi:10.1002/(sici)1099-1085(199707)11:9<1069::aid-hyp545>3.0.co;2-o es_ES
dc.description.references Cognard-Plancq, A.-L., Marc, V., Didon-Lescot, J.-F., & Normand, M. (2001). The role of forest cover on streamflow down sub-Mediterranean mountain watersheds: a modelling approach. Journal of Hydrology, 254(1-4), 229-243. doi:10.1016/s0022-1694(01)00494-2 es_ES
dc.description.references Shi, Z. H., Ai, L., Li, X., Huang, X. D., Wu, G. L., & Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 498, 165-176. doi:10.1016/j.jhydrol.2013.06.031 es_ES
dc.description.references Shi, Z. H., Huang, X. D., Ai, L., Fang, N. F., & Wu, G. L. (2014). Quantitative analysis of factors controlling sediment yield in mountainous watersheds. Geomorphology, 226, 193-201. doi:10.1016/j.geomorph.2014.08.012 es_ES
dc.description.references Wang, L., Shi, Z. H., Wang, J., Fang, N. F., Wu, G. L., & Zhang, H. Y. (2014). Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau, China. Journal of Hydrology, 512, 168-176. doi:10.1016/j.jhydrol.2014.02.066 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem