- -

Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization

Show full item record

García Mollá, VM.; Simarro Haro, MDLA.; Martínez Zaldívar, FJ.; González Salvador, A.; Vidal Maciá, AM. (2016). Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization. Signal Processing. 125:249-260. doi:10.1016/j.sigpro.2016.02.006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82817

Files in this item

Item Metadata

Title: Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization
Author:
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
This paper focuses on the improvement of known algorithms for maximum likelihood soft-output detection. These algorithms usually have large computational complexity, that can be reduced by using clipping. Taking two ...[+]
Subjects: MIMO , Soft-output maximum likelihood detection
Copyrigths: Reserva de todos los derechos
Source:
Signal Processing. (issn: 0165-1684 )
DOI: 10.1016/j.sigpro.2016.02.006
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.sigpro.2016.02.006
Description: This is the author’s version of a work that was accepted for publication in Signal Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Signal Processing 125 (2016) 249–260. DOI 10.1016/j.sigpro.2016.02.006.
Thanks:
This work has been partially funded by Generalitat Valenciana through the projects ISIC/2012/006 and PROMETEO II/2014/003, and by Ministerio Espanol de Economia y Competitividad through the project TEC2012-38142-C04 and ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record