- -

Synthesis of highly stable metal-containing extra-large-pore molecular sieves

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of highly stable metal-containing extra-large-pore molecular sieves

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Franco, Raquel es_ES
dc.contributor.author Paris-Carrizo, Cecilia Gertrudis es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-06-14T12:12:03Z
dc.date.available 2017-06-14T12:12:03Z
dc.date.issued 2016-02-28
dc.identifier.issn 1364-503X
dc.identifier.uri http://hdl.handle.net/10251/82844
dc.description.abstract [EN] The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Bronsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules. es_ES
dc.description.sponsorship Financial support by the Spanish Government-MINECO through 'Severo Ochoa' (SEV 2012-0267), Consolider Ingenio 2010-Multicat and MAT2012-37160 is acknowledged. The European Union is also acknowledged by the SynCatMatch project (ERC-AdG-2014-671093). en_EN
dc.language Inglés es_ES
dc.publisher Royal Society, The es_ES
dc.relation.ispartof Philosophical Transactions A: Mathematical, Physical and Engineering Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject metalloaluminophosphates es_ES
dc.subject extra-large pore zeotypes es_ES
dc.subject heterogeneous catalysis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of highly stable metal-containing extra-large-pore molecular sieves es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1098/rsta.2015.0075
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Martínez Franco, R.; Paris-Carrizo, CG.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of highly stable metal-containing extra-large-pore molecular sieves. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences. 374(2061). https://doi.org/10.1098/rsta.2015.0075 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1098/rsta.2015.0075 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 374 es_ES
dc.description.issue 2061 es_ES
dc.relation.senia 334871 es_ES
dc.identifier.eissn 1471-2962
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 es_ES
dc.description.references Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 es_ES
dc.description.references Davis, M. E. (1997). The Quest For Extra-Large Pore, Crystalline Molecular Sieves. Chemistry - A European Journal, 3(11), 1745-1750. doi:10.1002/chem.19970031104 es_ES
dc.description.references Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785 es_ES
dc.description.references Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Davis, M. E., Saldarriaga, C., Montes, C., Garces, J., & Crowdert, C. (1988). A molecular sieve with eighteen-membered rings. Nature, 331(6158), 698-699. doi:10.1038/331698a0 es_ES
dc.description.references Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997 es_ES
dc.description.references Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110 es_ES
dc.description.references Staab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653 es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107 es_ES
dc.description.references (s. f.). doi:10.1021/jp027447 es_ES
dc.description.references Martínez-Franco, R., Sun, J., Sastre, G., Yun, Y., Zou, X., Moliner, M., & Corma, A. (2014). Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2166), 20140107. doi:10.1098/rspa.2014.0107 es_ES
dc.description.references Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5 es_ES
dc.description.references Wilson ST Flanigen EM. 1986 Crystalline metal aluminophosphates . U.S. Patent 4 567 029. es_ES
dc.description.references Corà, F., Saadoune, I., & Catlow, C. R. A. (2002). Lewis Acidity in Transition-Metal-Doped Microporous Aluminophosphates. Angewandte Chemie International Edition, 41(24), 4677-4680. doi:10.1002/anie.200290013 es_ES
dc.description.references Hartmann, M., & Kevan, L. (2002). Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Research on Chemical Intermediates, 28(7-9), 625-695. doi:10.1163/15685670260469357 es_ES
dc.description.references Šponer, J., Čejka, J., Dědeček, J., & Wichterlová, B. (2000). Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11. Microporous and Mesoporous Materials, 37(1-2), 117-127. doi:10.1016/s1387-1811(99)00258-9 es_ES
dc.description.references Singh, P. S., Shaikh, R. A., Bandyopadhyay, R., & Rao, B. S. (1995). Synthesis of CoVPI-5 with bifunctional catalytic activity. Journal of the Chemical Society, Chemical Communications, (22), 2255. doi:10.1039/c39950002255 es_ES
dc.description.references Jhung, S. H., Jin, T., Kim, Y. H., & Chang, J.-S. (2008). Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation. Microporous and Mesoporous Materials, 109(1-3), 58-65. doi:10.1016/j.micromeso.2007.04.031 es_ES
dc.description.references Iton, L. E., Choi, I., Desjardins, J. A., & Maroni, V. A. (1989). Stabilization of Co (III) in aluminophosphate molecular sieve frameworks. Zeolites, 9(6), 535-538. doi:10.1016/0144-2449(89)90051-1 es_ES
dc.description.references Frache, A., Gianotti, E., & Marchese, L. (2003). Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today, 77(4), 371-384. doi:10.1016/s0920-5861(02)00381-4 es_ES
dc.description.references Yu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453h es_ES
dc.description.references Yang, X., Ma, H., Xu, Z., Xu, Y., Tian, Z., & Lin, L. (2007). Hydroisomerization of n-dodecane over Pt/MeAPO-11 (Me=Mg, Mn, Co or Zn) catalysts. Catalysis Communications, 8(8), 1232-1238. doi:10.1016/j.catcom.2006.11.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem