Mostrar el registro sencillo del ítem
dc.contributor.author | Jordán Núñez, Jorge | es_ES |
dc.contributor.author | Miró Martínez, Pau | es_ES |
dc.contributor.author | Vargas, Borja | es_ES |
dc.contributor.author | Varela-Entrecanales, Manuel | es_ES |
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.date.accessioned | 2017-06-15T09:00:41Z | |
dc.date.available | 2017-06-15T09:00:41Z | |
dc.date.issued | 2017-02 | |
dc.identifier.issn | 0883-9441 | |
dc.identifier.uri | http://hdl.handle.net/10251/82873 | |
dc.description.abstract | Body temperature monitoring provides healthcarers with key clinical information about the physiological status of patients. Temperature readings are taken periodically to detect febrile episodes and consequently implement the appropriate medical countermeasures. However, fever is often difficult to assess at early stages, or remains undetected until the next reading, probably a few hours later. The objective of this paper is to develop a statistical model to forecast fever before a temperature threshold is exceeded to improve the therapeutic approach to the subjects involved. To this end, temperature series of nine patients admitted to a general Internal Medicine ward were obtained with a continuous monitoring holter device, collecting measurements of peripheral and core temperature once per minute. These series were used to develop different statistical models that could quantify the probability of having a fever spike in the following 60 minutes. A validation series was collected to assess the accuracy of the models. Finally, the results were compared with the analysis of some series by experienced clinicians. Two different models were developed: a logistic regression model and a linear discrimination analysis model. Both of them exhibited a fever peak forecasting accuracy above 84%. When compared with experts assessment, both models identified 35 out of 36 fever spikes (97.2%). The models proposed are highly accurate in forecasting the appearance of fever spikes within a short period of time in patients with suspected or confirmed febrile related illnesses. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Critical Care | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Thermometry | es_ES |
dc.subject | Fever | es_ES |
dc.subject | Temperature monitoring | es_ES |
dc.subject | Infectious diseases | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | ApEn | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Statistical models for fever forecasting based on advanced body temperature monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jcrc.2016.09.013 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Jordán Núñez, J.; Miró Martínez, P.; Vargas, B.; Varela-Entrecanales, M.; Cuesta Frau, D. (2017). Statistical models for fever forecasting based on advanced body temperature monitoring. Journal of Critical Care. 37:136-140. doi:10.1016/j.jcrc.2016.09.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jcrc.2016.09.013 | es_ES |
dc.description.upvformatpinicio | 136 | es_ES |
dc.description.upvformatpfin | 140 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 37 | es_ES |
dc.relation.senia | 318060 | es_ES |