- -

Group extensions and graphs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Group extensions and graphs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Bolinches, Adolfo es_ES
dc.contributor.author Cosme-Llópez, E. es_ES
dc.contributor.author Esteban Romero, Ramón es_ES
dc.date.accessioned 2017-06-15T16:15:27Z
dc.date.available 2017-06-15T16:15:27Z
dc.date.issued 2016
dc.identifier.issn 0723-0869
dc.identifier.uri http://hdl.handle.net/10251/82922
dc.description NOTICE: this is the author’s version of a work that was accepted for publication in Expositiones Mathematicae. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Expositiones Mathematicae, [Volume 34, Issue 3, 2016, Pages 327-334] DOI#10.1016/j.exmath.2015.07.005¨ es_ES
dc.description.abstract A classical result of Gaschütz affirms that given a finite A-generated group G and a prime p, there exists a group G# and an epimorphism phi: G# ---> G whose kernel is an elementary abelian p-group which is universal among all groups satisfying this property. This Gaschütz universal extension has also been described in the mathematical literature with the help of the Cayley graph. We give an elementary and self-contained proof of the fact that this description corresponds to the Gaschütz universal extension. Our proof depends on another elementary proof of the Nielsen-Schreier theorem, which states that a subgroup of a free group is free. es_ES
dc.description.sponsorship This work has been supported by the grant MTM-2014-54707-C3-1-P of the Ministerio de Economia y Competitividad (Spain). The first author is also supported by Project No. 11271085 from the National Natural Science Foundation of China. The second author is supported by the predoctoral grant AP2010-2764 (Programa FPU, Ministerio de Educacion, Spain). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expositiones Mathematicae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Group es_ES
dc.subject Group extension es_ES
dc.subject Graph es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Group extensions and graphs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.exmath.2015.07.005
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11271085/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2010-2764/ES/AP2010-2764/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Ballester Bolinches, A.; Cosme-Llópez, E.; Esteban Romero, R. (2016). Group extensions and graphs. Expositiones Mathematicae. 34(3):327-334. https://doi.org/10.1016/j.exmath.2015.07.005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.exmath.2015.07.005 es_ES
dc.description.upvformatpinicio 327 es_ES
dc.description.upvformatpfin 334 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 292552 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem