- -

Quasicontinuous functions, domains, and extended calculus

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Quasicontinuous functions, domains, and extended calculus

Show full item record

Cazacu, R.; Lawson, JD. (2007). Quasicontinuous functions, domains, and extended calculus. Applied General Topology. 8(1):1-33. doi:10.4995/agt.2007.1908.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83053

Files in this item

Item Metadata

Title: Quasicontinuous functions, domains, and extended calculus
Author:
Issued date:
Abstract:
[EN] One of the aims of domain theory is the construction of an embedding of a given structure or data type as the maximal or “ideal” elements of an enveloping domain of “approximations,” sometimes called a domain environment. ...[+]
Subjects: Quasicontinuous functions , USCO maps , Domain theory , Bicontinuous lattices , Generalized calculus , Hamiltonian equations , Viscosity solutions
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2007.1908
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2007.1908
Type: Artículo

References

M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity So lutions and Applications, Lectures Notes in Mathematics 1660, Springer-Verlag, Berlin, Heidelberg, 1997

J. Borsík, Products of simply continuous and quasicontinuous functions, Math. Slovaca 45 (1995), 445–452.

J. Borsík, Maxima and minima of simply continuous and quasicontinuous functions, Math. Slovaca 46 (1996), 261–268. [+]
M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity So lutions and Applications, Lectures Notes in Mathematics 1660, Springer-Verlag, Berlin, Heidelberg, 1997

J. Borsík, Products of simply continuous and quasicontinuous functions, Math. Slovaca 45 (1995), 445–452.

J. Borsík, Maxima and minima of simply continuous and quasicontinuous functions, Math. Slovaca 46 (1996), 261–268.

J. Cao and W. Moors, Quasicontinuous selections of upper continuous set-valued mappings, Real Anal. Exchange 31 (2005), 63–72.

Cascales, B., & Oncina, L. (2003). Compactoid filters and USCO maps. Journal of Mathematical Analysis and Applications, 282(2), 826-845. doi:10.1016/s0022-247x(03)00280-4

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.

Lawson, J. D. (2001). Encounters Between Topology and Domain Theory. Domains and Processes, 1-32. doi:10.1007/978-94-010-0654-5_1

Martin, K. (2002). The Informatic Derivative at a Compact Element. Foundations of Software Science and Computation Structures, 310-325. doi:10.1007/3-540-45931-6_22

M. Matejdes, Sur les sélecteurs des multifonction, Math. Slovaca 37 (1987), 111–124.

Miller, W., & Akin, E. (1999). Transactions of the American Mathematical Society, 351(03), 1203-1226. doi:10.1090/s0002-9947-99-02424-1

T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), 259–306.

Samborskii, S. N. (2002). Cybernetics and Systems Analysis, 38(3), 453-466. doi:10.1023/a:1020325013640

[-]

This item appears in the following Collection(s)

Show full item record