- -

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

Show simple item record

Files in this item

dc.contributor.author Ballester-Bolinches, Adolfo es_ES
dc.contributor.author Esteban Romero, Ramón es_ES
dc.contributor.author Qiao, ShouHong es_ES
dc.date.accessioned 2017-06-16T10:54:56Z
dc.date.available 2017-06-16T10:54:56Z
dc.date.issued 2016-06
dc.identifier.issn 0003-889X
dc.identifier.uri http://hdl.handle.net/10251/83059
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00013-016-0901-7 es_ES
dc.description.abstract In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups. es_ES
dc.description.sponsorship The first and the second authors have been supported by the grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first author has been also supported by NSC of China (No. 11271085) and a project of Natural Science Foundation of Guangdong Province (No. 2015A030313791). The third author was supported by NSF of China (No. 11201082), Cultivation Program for Outstanding Young College Teachers (Yq2013061) and Project (2013B051000075) of Guangdong Province, Pei Ying Yu Cai Project of GDUT. The third author also thanks the China Scholarship Council and the Departament d'Algebra of the Universitat de Valencia for its hospitality. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation info:eu-repo/grantAgreement/GDUT//Yq2013061/CN/Cultivation Program for Outstanding Young College Teachers es_ES
dc.relation.ispartof Archiv der Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite group es_ES
dc.subject P-supersoluble group es_ES
dc.subject S-semipermutable subgroup es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A note on a result of Guo and Isaacs about p-supersolubility of finite groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00013-016-0901-7
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11271085/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GDUT//11271085/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11201082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2015A030313791/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Ballester-Bolinches, A.; Esteban Romero, R.; Qiao, S. (2016). A note on a result of Guo and Isaacs about p-supersolubility of finite groups. Archiv der Mathematik. 106(6):501-506. https://doi.org/10.1007/s00013-016-0901-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://link.springer.com/article/10.1007/s00013-016-0901-7 es_ES
dc.description.upvformatpinicio 501 es_ES
dc.description.upvformatpfin 506 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 106 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 321267 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Guangdong University of Technology es_ES
dc.contributor.funder Natural Science Foundation of Guangdong Province es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Ballester-Bolinches A., Esteban-Romero R., Asaad M.: Products of finite groups, volume 53 of de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2010) es_ES
dc.description.references Guo Y., Isaacs I. M.: Conditions on p-subgroups implying p-nilpotence or p-supersolvability. Arch. Math. 105, 215–222 (2015) es_ES
dc.description.references B. Huppert, Endliche Gruppen I, volume 134 of Grund. Math. Wiss. Springer, Berlin, Heidelberg, New York, 1967. es_ES
dc.description.references Isaacs I. M.: Semipermutable $${\pi}$$ π -subgroups. Arch. Math. 102, 1–6 (2014) es_ES
dc.description.references Kegel O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78, 205–221 (1962) es_ES
dc.description.references Li Y., Li B.: On weakly s-supplemented subgroups of finite groups. J. Algebra Appl. 10, 1–10 (2011) es_ES
dc.description.references Li Y., Qiao S., Su N., Wang Y.: On weakly s-semipermutable subgroups of finite groups. J. Algebra 371, 250–261 (2012) es_ES
dc.description.references Skiba A. N.: On weakly s-permutable subgroups of finite groups. J. Algebra 315, 192–209 (2007) es_ES
dc.description.references Wang L., Wang Y.: On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups. Comm. Algebra 34, 143–149 (2006) es_ES


This item appears in the following Collection(s)

Show simple item record