Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, Adolfo | es_ES |
dc.contributor.author | Esteban Romero, Ramón | es_ES |
dc.contributor.author | Qiao, ShouHong | es_ES |
dc.date.accessioned | 2017-06-16T10:54:56Z | |
dc.date.available | 2017-06-16T10:54:56Z | |
dc.date.issued | 2016-06 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.uri | http://hdl.handle.net/10251/83059 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s00013-016-0901-7 | es_ES |
dc.description.abstract | In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups. | es_ES |
dc.description.sponsorship | The first and the second authors have been supported by the grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first author has been also supported by NSC of China (No. 11271085) and a project of Natural Science Foundation of Guangdong Province (No. 2015A030313791). The third author was supported by NSF of China (No. 11201082), Cultivation Program for Outstanding Young College Teachers (Yq2013061) and Project (2013B051000075) of Guangdong Province, Pei Ying Yu Cai Project of GDUT. The third author also thanks the China Scholarship Council and the Departament d'Algebra of the Universitat de Valencia for its hospitality. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Archiv der Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite group | es_ES |
dc.subject | P-supersoluble group | es_ES |
dc.subject | S-semipermutable subgroup | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A note on a result of Guo and Isaacs about p-supersolubility of finite groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00013-016-0901-7 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GDUT//Yq2013061/CN/Cultivation Program for Outstanding Young College Teachers | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11271085/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GDUT//11271085/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11201082/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2015A030313791/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Esteban Romero, R.; Qiao, S. (2016). A note on a result of Guo and Isaacs about p-supersolubility of finite groups. Archiv der Mathematik. 106(6):501-506. https://doi.org/10.1007/s00013-016-0901-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00013-016-0901-7 | es_ES |
dc.description.upvformatpinicio | 501 | es_ES |
dc.description.upvformatpfin | 506 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 321267 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Guangdong University of Technology | es_ES |
dc.contributor.funder | Natural Science Foundation of Guangdong Province | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.description.references | Ballester-Bolinches A., Esteban-Romero R., Asaad M.: Products of finite groups, volume 53 of de Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2010) | es_ES |
dc.description.references | Guo Y., Isaacs I. M.: Conditions on p-subgroups implying p-nilpotence or p-supersolvability. Arch. Math. 105, 215–222 (2015) | es_ES |
dc.description.references | B. Huppert, Endliche Gruppen I, volume 134 of Grund. Math. Wiss. Springer, Berlin, Heidelberg, New York, 1967. | es_ES |
dc.description.references | Isaacs I. M.: Semipermutable $${\pi}$$ π -subgroups. Arch. Math. 102, 1–6 (2014) | es_ES |
dc.description.references | Kegel O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78, 205–221 (1962) | es_ES |
dc.description.references | Li Y., Li B.: On weakly s-supplemented subgroups of finite groups. J. Algebra Appl. 10, 1–10 (2011) | es_ES |
dc.description.references | Li Y., Qiao S., Su N., Wang Y.: On weakly s-semipermutable subgroups of finite groups. J. Algebra 371, 250–261 (2012) | es_ES |
dc.description.references | Skiba A. N.: On weakly s-permutable subgroups of finite groups. J. Algebra 315, 192–209 (2007) | es_ES |
dc.description.references | Wang L., Wang Y.: On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups. Comm. Algebra 34, 143–149 (2006) | es_ES |