- -

Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Buch, Cristina es_ES
dc.contributor.author Herraiz Cardona, Isaac es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author García Antón, José es_ES
dc.contributor.author Pérez Herranz, Valentín es_ES
dc.date.accessioned 2017-06-19T10:13:41Z
dc.date.available 2017-06-19T10:13:41Z
dc.date.issued 2016-07
dc.identifier.issn 0021-891X
dc.identifier.uri http://hdl.handle.net/10251/83164
dc.description.abstract Platinum is the electrode material with the highest catalytic activity for the hydrogen evolution reaction (HER). However, its high cost and scarcity are the two major barriers for its usage in the industrial alkaline water electrolysis, which requires searching for other cheaper and more available materials with good catalytic activity. Ni based materials have attracted more and more attention due to their good activity for the HER and sufficient corrosion resistance in alkaline solutions at considerable low cost. According to the Brewer intermetallic bonding theory, molybdenum alloyed with nickel (hypo hyper-d-electronic transition metal) could improve the intrinsic catalytic activity for the HER. In this work, Ni and NiMo metallic coatings were galvanostatically electrodeposited on a stainless steel AISI 304 substrate by means of the double template electrochemical process. The evaluation of these electrodes as H2-evolving cathodes was done in 30 % wt. KOH by pseudo-steady-state polarization curves and electrochemical impedance spectroscopy (EIS) at different temperatures. From Tafel curves results, it is shown that the NiMo electrodes have higher catalytic activity than Ni. On the other hand, from EIS results, it is possible to conclude that the NiMo electrodes showed higher intrinsic catalytic activity for HER than the pure Ni electrode as a consequence of alloying hypo hyper-d-electronic transition metals. es_ES
dc.description.sponsorship The authors acknowledge the support of Generalitat Valenciana (PROMETEO/2010/023) and Universidad Politecnica de Valencia (PAID-06-10-2227). We wish to thank the Electron Microscopy Service of the UPV. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Applied Electrochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject NiMo alloys es_ES
dc.subject HER es_ES
dc.subject Surface roughness factor es_ES
dc.subject Catalytic activity es_ES
dc.subject Alkaline water electrolysis es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10800-016-0970-0
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F023/ES/GENERACION DE HIDROGENO: DESARROLLO DE NUEVOS MATERIALES DE ELECTRODO PARA LA REACCION DE EVOLUCION DE HIGROGENO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-2227/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation González Buch, C.; Herraiz Cardona, I.; Ortega Navarro, EM.; García Antón, J.; Pérez Herranz, V. (2016). Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. Journal of Applied Electrochemistry. 46(7):791-803. https://doi.org/10.1007/s10800-016-0970-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10800-016-0970-0 es_ES
dc.description.upvformatpinicio 791 es_ES
dc.description.upvformatpfin 803 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 313642 es_ES
dc.identifier.eissn 1572-8838
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Verizoglu TN, Sherif SA, Barbir F (2005) Hydrogen energy solutions. In: Agardy FJ, Nemerow NL (eds) Enviromental solutions. Elsevier Inc., USA, pp 143–180 es_ES
dc.description.references Barbir F (2009) Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34:308–312. doi: 10.1016/j.energy.2008.07.007 es_ES
dc.description.references Veziroglu TN, Barbir F (1992) Hydrogen: the wonder fuel. Int J Hydrog Energy 17:391–404. doi: 10.1016/0360-3199(92)90183-W es_ES
dc.description.references Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Progr Energy Combust 36:307–326. doi: 10.1016/j.pecs.2009.11.002 es_ES
dc.description.references Stojić DL, Marĉeta MP, Sovilj SP, Miljanić SS (2003) Hydrogen generation from water electrolysis—possibilities of energy saving. J Power Sources 118:315–319. doi: 10.1016/S0378-7753(03)00077-6 es_ES
dc.description.references Souza RF, Padilha JC, Gonçalves RS, Souza MO, Rault-Berthelot J (2007) Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device. J Power Sources 164:792–798. doi: 10.1016/j.jpowsour.2006.11.049 es_ES
dc.description.references Stojić DL, Grozdić TD, Kaninski MPM, Maksić AD, Simić ND (2006) Intermetallics as advanced cathode materials in hydrogen production via electrolysis. Int J Hydrog Energy 31:841–846. doi: 10.1016/j.ijhydene.2005.08.009 es_ES
dc.description.references Yazici B, Tatli G, Galip H, Erbil M (1995) Investigation of suitable cathodes for the production of hydrogen gas by electrolysis. Int J Hydrog Energy 20:957–965. doi: 10.1016/0360-3199(95)00032-9 es_ES
dc.description.references Solmaz R, Kardaş G (2011) Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production. Int J Hydrog Energy 36:12079–12087. doi: 10.1016/j.ijhydene.2011.06.101 es_ES
dc.description.references Lasia A (2003) Hydrogen evolution reaction. In: Vielstich W, Lamm A, Gasteiger HA (eds.) Handbook of fuel cells: fundamentals, technology and applications. Volume 2: Fuel cell electrocatalysis, John Wiley and Sons Ltd, Chichester, pp 416–440 es_ES
dc.description.references Lasia A, Rami A (1990) Kinetics of hydrogen evolution on nickel electrodes. J Electroanal Chem Interfacial Electrochem 294:123–141. doi: 10.1016/0022-0728(90)87140-F es_ES
dc.description.references Rami A, Lasia A (1992) Kinetics of hydrogen evolution on Ni–Al alloy electrodes. J Appl Electrochem 22:376–382. doi: 10.1007/BF01092692 es_ES
dc.description.references Chen LL, Lasia A (1992) Study of the kinetics of hydrogen evolution reaction on Nickel–Zinc powder electrodes. J Electrochem Soc 139:3214–3219. doi: 10.1149/1.2069055 es_ES
dc.description.references Herraiz-Cardona I, Ortega E, García-Antón J, Pérez-Herranz V (2011) Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. Int J Hydrog Energy 36:9428–9438. doi: 10.1016/j.ijhydene.2011.05.047 es_ES
dc.description.references Lupi C, Dell’Era A, Pasquali M (2009) Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrogen Energy 34:2101–2106. doi: 10.1016/j.ijhydene.2009.01.015 es_ES
dc.description.references Herraiz-Cardona I, Ortega E, Pérez-Herranz V (2011) Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochim Acta 56:1308–1315. doi: 10.1016/j.electacta.2010.10.093 es_ES
dc.description.references Herraiz-Cardona I, González-Buch C, Valero-Vidal C, Ortega E, Pérez-Herranz V (2013) Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media. J Power Sources 240:698–704. doi: 10.1016/j.jpowsour.2013.05.041 es_ES
dc.description.references Herraiz-Cardona I, Ortega E, Vázquez-Gómez L, Pérez-Herranz V (2011) Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int J Hydrog Energy 36:11578–11587. doi: 10.1016/j.ijhydene.2011.06.067 es_ES
dc.description.references Navarro-Flores E, Chong Z, Omanovic S (2005) Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A-Chem 226:179–197. doi: 10.1016/j.molcata.2004.10.029 es_ES
dc.description.references Giz MJ, Benito SC, González ER (2000) NiFeZn codeposited as a cathode material for the production of hydrogen by water. Int J Hydrog Energy 25:621–626. doi: 10.1016/S0360-3199(99)00084-1 es_ES
dc.description.references Solmaz R, Kardaş G (2009) Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim Acta 54:3726–3734. doi: 10.1016/j.electacta.2009.01.064 es_ES
dc.description.references Ullal Y, Hegde AC (2014) Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. Int J Hydrog Energy 39:10485–10492. doi: 10.1016/j.ijhydene.2014.05.016 es_ES
dc.description.references Fan C, Piron DL, Sleb A, Paradis P (1994) Study of electrodeposited nickel–molybdenum, nickel–tungsten, cobalt–molybdenum, and cobalt–tungsten as hydrogen electrodes in alkaline water electrolysis. J Electrochem Soc 141:382–387. doi: 10.1149/1.2054736 es_ES
dc.description.references Solmaz R, Döner A, Kardaş G (2009) The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int J Hydrog Energy 34:2089–2094. doi: 10.1016/j.ijhydene.2009.01.007 es_ES
dc.description.references Wu L, He Y, Lei T, Nan B, Xu N, Zou J, Huang B, Liu CT (2014) The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis. Energy 67:19–26. doi: 10.1016/j.energy.2014.02.033 es_ES
dc.description.references Sheela G, Pushpavanam M, Pushpavanam S (2002) Zinc–nickel alloy electrodeposits for water electrolysis. Int J Hydrog Energy 27:627–633. doi: 10.1016/S0360-3199(01)00170-7 es_ES
dc.description.references Solmaz R, Kardaş G (2007) Hydrogen evolution and corrosion performance of NiZn coatings. Energy Convers Manag 48(2007):583–591. doi: 10.1016/j.enconman.2006.06.004 es_ES
dc.description.references Brewer L (1963) In: Beck PA (ed) Electronic structure and alloy chemistry of transition elements. Interscience, New York, p 221 es_ES
dc.description.references Jaksic MM (1984) Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases. Electrochim Acta 29:1539–1550. doi: 10.1016/0013-4686(84)85007-0 es_ES
dc.description.references Jaksic MM, Jaksic JM (1984) Fermi dynamics and some structural bonding aspects of electrocatalysis for hydrogen evolution. Electrochim Acta 39:1695–1714. doi: 10.1016/0013-4686(94)85155-7 es_ES
dc.description.references Jaksic MM, Lacnjevac CM, Grgur BN, Krstajic NV (2000) Volcano plots along intermetallic hypo–hyper-d-electronic phase diagrams and electrocatalysis for hydrogen electrode reactions. J New Mat Electrochem Systems 3:131–144 es_ES
dc.description.references Jaksic MM (2001) Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions. Int J Hydrog Energy 26:559–578. doi: 10.1016/S0360-3199(00)00120-8 es_ES
dc.description.references Raj IA, Venkatesan VK (1988) Characterization of nickel–molybdenum and nickel–molybdenum–iron alloy coatings as cathodes for alkaline water electrolysers. Int J Hydrog Energy 13:215–223. doi: 10.1016/0360-3199(88)90088-2 es_ES
dc.description.references Gennero de Chialvo MR, Chialvo AC (1998) Hydrogen evolution reaction on smooth Ni(1 − x) + Mo(x) alloys (0 ≤ x ≤ 0.25). J Electroanal Chem 448:87–93. doi: 10.1016/S0022-0728(98)00011-4 es_ES
dc.description.references Simpraga R, Bai L, Conway BE (1995) Real area and electrocatalysis factors in hydrogen evolution kinetics at electrodeposited Ni–Mo and Ni–Mo–Cd composites: effect of Cd content and nature of substrate. J Appl Electrochem 25:628–641. doi: 10.1007/BF00241924 es_ES
dc.description.references Fan C, Piron DL, Paradis P (1994) Hydrogen evolution on electrodeposited nickel–cobalt–molybdenum in alkaline water electrolysis. Electrochim Acta 39:2715–2722. doi: 10.1016/0013-4686(94)00263-0 es_ES
dc.description.references Raj IA, Vasu KI (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38. doi: 10.1007/BF01012468 es_ES
dc.description.references Raj IA, Vasu KI (1992) Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits. J Appl Electrochem 22:471–477. doi: 10.1007/BF01077551 es_ES
dc.description.references Divisek J, Schmitz H, Balej J (1989) Ni and Mo coatings as hydrogen cathodes. J Appl Electrochem 19:519–530. doi: 10.1007/BF01022108 es_ES
dc.description.references Huot JY, Trudeau ML, Schulz R (1991) Low hydrogen overpotential nanocrystalline Ni–Mo cathodes for alkaline water electrolysis. J Electrochem Soc 138:1316–1321. doi: 10.1149/1.2085778 es_ES
dc.description.references Krstajić NV, Jović VD, Lj Gajić-Krstajić, Jović BM, Antozzi AL, Martelli GN (2008) Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int J Hydrog Energy 33:3676–3687. doi: 10.1016/j.ijhydene.2008.04.039 es_ES
dc.description.references Dini JW (1993) Electrodeposition: the materials science of coating and substances. Noyes Publications, New Jersey es_ES
dc.description.references Wood D (1938) Metal Industry 36:330 es_ES
dc.description.references Herraiz-Cardona I, Ortega E, Vázquez-Gómez L, Pérez-Herranz V (2012) Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int J Hydrog Energy 37:2147–2156. doi: 10.1016/j.ijhydene.2011.09.155 es_ES
dc.description.references Herraiz-Cardona I, González-Buch C, Ortega E, García-Antón J, Pérez-Herranz V (2013) Energy efficiency improvement of alkaline water electrolysis by using 3D Ni cathodes fabricated via a double-template electrochemical process. Chem Eng Trans 32:451–456. doi: 10.3303/CET1332076 es_ES
dc.description.references Shin H, Liu M (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464. doi: 10.1021/cm048887b es_ES
dc.description.references Bonou L, Eyraud M, Denoyel R, Massiani Y (2002) Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements. Electrochim Acta 47:4139–4148. doi: 10.1016/S0013-4686(02)00356-0 es_ES
dc.description.references Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J Electrochem Soc 142:L87–L89. doi: 10.1149/1.2044254 es_ES
dc.description.references Soares DM, Wasle S, Weil KG, Doblhofer K (2002) Chloride ion catalysis of the copper deposition reaction. J Electroanal Chem 532:353–358 es_ES
dc.description.references Halim J, Abdel-Karim R, El-Raghy S, Nabil M, Waheed A (2012) Electrodeposition and characterization of nanocrystalline Ni–Mo catalysts for hydrogen production. J Nanomater 2012:9. doi: 10.1155/2012/845673 es_ES
dc.description.references García-Antón J, Igual-Muñoz A, Guiñón JL, Pérez-Herranz V (2000) Horizontal electrochemical cell by the electro-optical analysis of electrochemical process. Spain P-200002526 es_ES
dc.description.references Kubisztal J, Budniok A, Lasia A (2007) Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. Int J Hydrog Energy 32:1211–1218 es_ES
dc.description.references Jukic A, Piljac J, Meticoš-Hukovic M (2001) Electrocatalytic behavior of the Co33Zr67 metallic glass for hydrogen evolution. J Mol Catal A-Chem 166:293–302. doi: 10.1016/S1381-1169(00)00452-0 es_ES
dc.description.references Savadogo O, Ndzebet E (2001) Influence of SiW12O40 4− on the electrocatalytic behaviour of Pt–Co alloy supported on carbon for water electrolysis in 3 M KOH aqueous solution. Int J Hydrog Energy 26:213–218. doi: 10.1016/S0360-3199(00)00059-8 es_ES
dc.description.references Correia AN, Machado SAS (1998) Hydrogen evolution on electrodeposited Ni and Hg ultramicroelectrodes. Electrochim Acta 43:367–373. doi: 10.1016/S0013-4686(97)00050-9 es_ES
dc.description.references Machado SAS, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39:1385–1391. doi: 10.1016/0013-4686(94)E0003-I es_ES
dc.description.references Tie-chui Y, Rui-di L, Ke-chao Z (2004) Electrocatalytic properties of Ni–S–Co coating electrode for hydrogen evolution in alkaline medium. Trans Nonferrous Metals Soc China 17:762–765. doi: 10.1016/S1003-6326(07)60170-8 es_ES
dc.description.references Tasic GS, Maslovara SP, Zugic DL, Maksic AD, Kaninski MPM (2011) Characterization of the Ni–Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. Int J Hydrog Energy 36:11588–11595. doi: 10.1016/j.ijhydene.2011.06.081 es_ES
dc.description.references Bard AJ, Inzelt G, Scholz F (2008) Electrochemical dictionary, 1st edn. Springer, Berlin es_ES
dc.description.references Zeng K, Zhang D (2014) Evaluating the effect of surface modifications on Ni based electrodes for alkaline water electrolysis. Fuel 116:692–698. doi: 10.1016/j.fuel.2013.08.070 es_ES
dc.description.references Keyser H, Beccu KD, Gutjahr MA (1976) Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen. Electrochim Acta 21:539–543 es_ES
dc.description.references Levie R (1967) Electrochemical responses of porous and rough electrodes. In: Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 6. Interscience, New York, pp 329–397 es_ES
dc.description.references Brug GJ, Van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295 es_ES
dc.description.references Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734. doi: 10.1351/pac199163050711 es_ES
dc.description.references Chen L, Lasia A (1991) Study of the kinetics of hydrogen evolution reaction on nickel–zinc alloy electrodes. J Electrochem Soc 138:3321–3328. doi: 10.1149/1.2085409 es_ES
dc.description.references Kellenberger A, Vaszilcsin N, Brandl W, Duteanu N (2007) Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique. Int J Hydrog Energy 32:3258–3265. doi: 10.1016/j.ijhydene.2007.02.028 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem