Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Rafael | es_ES |
dc.contributor.author | Pelaez, María J. | es_ES |
dc.contributor.author | Urbano Salvador, Ana María | es_ES |
dc.date.accessioned | 2017-06-20T09:31:29Z | |
dc.date.available | 2017-06-20T09:31:29Z | |
dc.date.issued | 2016-12 | |
dc.identifier.issn | 2254-3902 | |
dc.identifier.uri | http://hdl.handle.net/10251/83249 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s40324-016-0073-1 | es_ES |
dc.description.abstract | [EN] A nonpositive real matrix $A= (a_{ij})_{1 \leq i, j \leq n}$ is said to be totally nonpositive (negative) if all its minors are nonpositive (negative) and it is abbreviated as t.n.p. (t.n.). In this work a bidiagonal factorization of a nonsingular t.n.p. matrix $A$ is computed and it is stored in an matrix represented by $\mathcal{BD}_{(t.n.p.)}(A)$ when $a_{11}< 0$ (or $\mathcal{BD}_{(zero)}(A)$ when $a_{11}= 0$). As a converse result, an efficient algorithm to know if an matrix $\mathcal{BD}_{(t.n.p.)}(A)$ ($\mathcal{BD}_{(zero)}(A)$) is the bidiagonal factorization of a t.n.p. matrix with $a_{11}<0$ ($a_{11}= 0$) is given. Similar results are obtained for t.n. matrices using the matrix $\mathcal{BD}_{(t.n.)}(A)$, and these characterizations are extended to rectangular t.n.p. (t.n.) matrices. Finally, the bidiagonal factorization of the inverse of a nonsingular t.n.p. (t.n.) matrix $A$ is directly obtained from $\mathcal{BD}_{(t.n.p.)}(A)$ ($\mathcal{BD}_{(t.n.)}(A)$). | es_ES |
dc.description.sponsorship | This research was supported by the Spanish DGI grant MTM2013-43678-P and by the Chilean program FONDECYT 1100029 | |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | SeMA Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Totally nonpositive matrix | es_ES |
dc.subject | Totally negative matrix | es_ES |
dc.subject | Inverse | es_ES |
dc.subject | Bidiagonal factorization | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On the characterization of totally nonpositive matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40324-016-0073-1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1100029/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, R.; Pelaez, MJ.; Urbano Salvador, AM. (2016). On the characterization of totally nonpositive matrices. SeMA Journal. 73(4):347-368. https://doi.org/10.1007/s40324-016-0073-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s40324-016-0073-1 | es_ES |
dc.description.upvformatpinicio | 347 | es_ES |
dc.description.upvformatpfin | 368 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 73 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 303460 | es_ES |
dc.identifier.eissn | 2281-7875 | |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987) | es_ES |
dc.description.references | Alonso, P., Peña, J.M., Serrano, M.L.: Almost strictly totally negative matrices: an algorithmic characterization. J. Comput. Appl. Math. 275, 238–246 (2015) | es_ES |
dc.description.references | Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997) | es_ES |
dc.description.references | Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: $$LDU$$ L D U -factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30(2), 777–782 (2008) | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009) | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Characterizations of rectangular totally and strictly totally positive matrices. Linear Algebra Appl. 432, 2623–2633 (2010) | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Quasi- $$LDU$$ L D U factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013) | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi- $$LDU$$ L D U form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014) | es_ES |
dc.description.references | Fallat, S.M., Van Den Driessche, P.: On matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000) | es_ES |
dc.description.references | Fallat, S.M.: Bidiagonal factorizations of totally nonnegative matrices. Am. Math. Mon. 108(8), 697–712 (2001) | es_ES |
dc.description.references | Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, New Jersey (2011) | es_ES |
dc.description.references | Gasca, M., Micchelli, C.A.: Total positivity and applications. Math. Appl. 359, Kluwer Academic Publishers, Dordrecht (1996) | es_ES |
dc.description.references | Gasca, M., Peña, J.M.: Total positivity, $$QR$$ Q R factorization and Neville elimination. SIAM J. Matrix Anal. Appl. 4, 1132–1140 (1993) | es_ES |
dc.description.references | Gasca, M., Peña, J.M.: A test for strict sign-regularity. Linear Algebra Appl. 197(198), 133–142 (1994) | es_ES |
dc.description.references | Gasca, M., Peña, J.M.: A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33–53 (1994) | es_ES |
dc.description.references | Gassó, M., Torregrosa, J.R.: A totally positive factorization of rectangular matrices by the Neville elimination. SIAM J. Matrix Anal. Appl. 25, 86–994 (2004) | es_ES |
dc.description.references | Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010) | es_ES |
dc.description.references | Huang, R., Chu, D.: Relative perturbation analysis for eigenvalues and singular values of totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 36(2), 476–495 (2015) | es_ES |
dc.description.references | Karlin, S.: Total Nonpositivity. Stanford University Press, Stanford (1968) | es_ES |
dc.description.references | Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27(1), 1–23 (2005) | es_ES |
dc.description.references | Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29(3), 731–751 (2007) | es_ES |
dc.description.references | Parthasarathy, T.: $$N$$ N -matrices. Linear Algebra Appl. 139, 89–102 (1990) | es_ES |
dc.description.references | Peña, J.M.: Test for recognition of total positivity. SeMA J. 62(1), 61–73 (2013) | es_ES |
dc.description.references | Pinkus, A.: Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181. Cambridge University Press (2009) | es_ES |
dc.description.references | Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972) | es_ES |