- -

Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Franco, Raquel es_ES
dc.contributor.author Li, Zhibin es_ES
dc.contributor.author Martínez Triguero, Luis Joaquín es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-06-22T10:59:40Z
dc.date.available 2017-06-22T10:59:40Z
dc.date.issued 2016
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/83443
dc.description.abstract [EN] The physico-chemical properties of the small pore SAPO-18 zeotype have been controlled by properly selecting the organic molecules acting as organic structure directing agents (OSDAs). The two organic molecules selected to attempt the synthesis of the SAPO-18 materials were N,N-diisopropylethylamine (DIPEA) and N,N-dimethyl-3,5-dimethylpiperidinium (DMDMP). On the one hand, DIPEA allows small crystal sizes (0.1-0.3 mu m) to be attained with limited silicon distributions when the silicon content in the synthesis gel is high (Si/TO2 similar to 0.8). On the other hand, the use of DMDMP directs the formation of larger crystallites (0.9-1.0 mu m) with excellent silicon distributions, even when the silicon content in the synthesis media is high (Si/TO2 similar to 0.8). It is worth noting that this is the first description of the use of DMDMP as OSDA for the synthesis of the SAPO-18 material, revealing not only the excellent directing role of this OSDA in stabilizing the large cavities present in the SAPO-18 structure, but also its role in selectively placing the silicon atoms in isolated framework positions. The synthesized SAPO-18 materials have been characterized by different techniques, such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N-2 adsorption, solid state NMR, and ammonia temperature programmed desorption (NH3-TPD). Finally, their catalytic activity has been evaluated for the methanol-to-olefin (MTO) process at different reaction temperatures (350 and 400 degrees C), revealing that the SAPO-18 catalysts with optimized silicon distributions and crystal sizes show excellent catalytic properties for the MTO reaction. These optimized SAPO-18 materials present improved catalyst lifetimes compared to standard SAPO-34 and SSZ-39 catalysts, even when tested at low reaction temperatures (i.e. 350 degrees C). es_ES
dc.description.sponsorship Financial support by the Spanish Government-MINECO through “Severo Ochoa” (SEV 2012-0267), MAT2015-71261-R, and CTQ2015-68951-C3-1-R; by the European Union through ERC-AdG-2014-671093 (SynCatMatch); and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is acknowledged.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Small-pore zeolites es_ES
dc.subject Molecular-sieves es_ES
dc.subject Coke formation es_ES
dc.subject Light olefins es_ES
dc.subject Acid sites es_ES
dc.subject Cage size es_ES
dc.subject Conversion es_ES
dc.subject Deactivation es_ES
dc.subject Hydrocarbons es_ES
dc.subject Selectivity es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C5CY02298C
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Martínez Franco, R.; Li, Z.; Martínez Triguero, LJ.; Moliner Marin, M.; Corma Canós, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science and Technology. 6(8):2796-2806. https://doi.org/10.1039/C5CY02298C es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c5cy02298c es_ES
dc.description.upvformatpinicio 2796 es_ES
dc.description.upvformatpfin 2806 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 316528 es_ES
dc.identifier.eissn 2044-4761
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046 es_ES
dc.description.references Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007 es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063 es_ES
dc.description.references Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178 es_ES
dc.description.references Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1-2), 3-48. doi:10.1016/s1387-1811(98)00319-9 es_ES
dc.description.references M. Stöcker , Zeolites and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 687–711 es_ES
dc.description.references Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009 es_ES
dc.description.references Song, W., Haw, J. F., Nicholas, J. B., & Heneghan, C. S. (2000). Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 122(43), 10726-10727. doi:10.1021/ja002195g es_ES
dc.description.references Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4 es_ES
dc.description.references Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016u es_ES
dc.description.references Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Topics in Catalysis, 58(7-9), 416-423. doi:10.1007/s11244-015-0384-y es_ES
dc.description.references Wendelbo, R., Akporiaye, D., Andersen, A., Dahl, I. M., & Mostad, H. B. (1996). Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Applied Catalysis A: General, 142(2), L197-L207. doi:10.1016/0926-860x(96)00118-4 es_ES
dc.description.references Gayubo, A. G., Aguayo, A. T., Alonso, A., & Bilbao, J. (2007). Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. Industrial & Engineering Chemistry Research, 46(7), 1981-1989. doi:10.1021/ie061278o es_ES
dc.description.references Chen, J., Li, J., Wei, Y., Yuan, C., Li, B., Xu, S., … Liu, Z. (2014). Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catalysis Communications, 46, 36-40. doi:10.1016/j.catcom.2013.11.016 es_ES
dc.description.references Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2015). Mesopore-Modified SAPO-18 with Potential Use as Catalyst for the MTO Reaction. Topics in Catalysis, 59(2-4), 278-291. doi:10.1007/s11244-015-0447-0 es_ES
dc.description.references Chen, J., Wright, P. A., Thomas, J. M., Natarajan, S., Marchese, L., Bradley, S. M., … Gai-Boyes, P. L. (1994). SAPO-18 Catalysts and Their Broensted Acid Sites. The Journal of Physical Chemistry, 98(40), 10216-10224. doi:10.1021/j100091a042 es_ES
dc.description.references Bhawe, Y., Moliner-Marin, M., Lunn, J. D., Liu, Y., Malek, A., & Davis, M. (2012). Effect of Cage Size on the Selective Conversion of Methanol to Light Olefins. ACS Catalysis, 2(12), 2490-2495. doi:10.1021/cs300558x es_ES
dc.description.references Dusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577 es_ES
dc.description.references Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c es_ES
dc.description.references Chen, J., Thomas, J. M., Wright, P. A., & Townsend, R. P. (1994). Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. Catalysis Letters, 28(2-4), 241-248. doi:10.1007/bf00806053 es_ES
dc.description.references Hunger, M., Seiler, M., & Buchholz, A. (2001). Catalysis Letters, 74(1/2), 61-68. doi:10.1023/a:1016687014695 es_ES
dc.description.references Fan, D., Tian, P., Xu, S., Xia, Q., Su, X., Zhang, L., … Liu, Z. (2012). A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template. Journal of Materials Chemistry, 22(14), 6568. doi:10.1039/c2jm15281a es_ES
dc.description.references Abdollahi, S., Ghavipour, M., Nazari, M., Behbahani, R. M., & Moradi, G. R. (2015). Effects of static and stirring aging on physiochemical properties of SAPO-18 and its performance in MTO process. Journal of Natural Gas Science and Engineering, 22, 245-251. doi:10.1016/j.jngse.2014.11.036 es_ES
dc.description.references Yuen, L.-T., Zones, S. I., Harris, T. V., Gallegos, E. J., & Auroux, A. (1994). Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves. Microporous Materials, 2(2), 105-117. doi:10.1016/0927-6513(93)e0039-j es_ES
dc.description.references Bleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0 es_ES
dc.description.references Wu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029 es_ES
dc.description.references Martínez-Franco, R., Moliner, M., & Corma, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis, 319, 36-43. doi:10.1016/j.jcat.2014.08.005 es_ES
dc.description.references Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u es_ES
dc.description.references Yu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453h es_ES
dc.description.references Katada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894n es_ES
dc.description.references Smith, R. L., Svelle, S., del Campo, P., Fuglerud, T., Arstad, B., Lind, A., … Anderson, M. W. (2015). CHA/AEI intergrowth materials as catalysts for the Methanol-to-Olefins process. Applied Catalysis A: General, 505, 1-7. doi:10.1016/j.apcata.2015.06.027 es_ES
dc.description.references Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h es_ES
dc.description.references Opanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079d es_ES
dc.description.references Kim, W., & Ryoo, R. (2014). Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catalysis Letters, 144(7), 1164-1169. doi:10.1007/s10562-014-1274-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem