Berenguer Verdú, AJ.; Fusco, V.; Zelenchuk, DE.; Sánchez-Escuderos, D.; Baquero Escudero, M.; Boria Esbert, VE. (2016). Propagation Characteristics of Groove Gap Waveguide Below and Above Cutoff. IEEE Transactions on Microwave Theory and Techniques. 64(1):27-36. https://doi.org/10.1109/TMTT.2015.2504501
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83530
Título:
|
Propagation Characteristics of Groove Gap Waveguide Below and Above Cutoff
|
Autor:
|
Berenguer Verdú, Antonio José
Fusco, Vincent
Zelenchuk, Dmitry E.
Sánchez-Escuderos, Daniel
Baquero Escudero, Mariano
Boria Esbert, Vicente Enrique
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
|
Fecha difusión:
|
|
Resumen:
|
Recently, gap waveguides have been shown as a potential alternative to convenational waveguides in the millimeter-wave band. Until now, groove gap waveguide (GGW) has been studied through direct correspondence with rectangular ...[+]
Recently, gap waveguides have been shown as a potential alternative to convenational waveguides in the millimeter-wave band. Until now, groove gap waveguide (GGW) has been studied through direct correspondence with rectangular waveguide with the same physical dimensions. However, there have been observed differences in the above cutoff propagation characteristics between these two waveguide types. Furthermore, the behavior of GGW below cutoff remains unknown. This work presents a discussion of both below and above cutoff propagation characteristics of GGW, and introduces a simple model that explains the observed GGW behavior and establishes well its propagation characteristics. Two thru-reflect-line calibration kits have been manufactured, and the measurements have good agreement with the proposed analysis model results.
[-]
|
Palabras clave:
|
Characteristic impedance
,
Evanescent propagation
,
Groove gap waveguide (GGW)
,
Transmission lines
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
IEEE Transactions on Microwave Theory and Techniques. (issn:
0018-9480
)
|
DOI:
|
10.1109/TMTT.2015.2504501
|
Editorial:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Versión del editor:
|
http://dx.doi.org/10.1109/TMTT.2015.2504501
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//TEC2013-47360-C3-3-P/ES/ONDAS MILIMETRICAS EN TECNOLOGIA LTCC PARA SISTEMAS DE ANTENAS 2020/
info:eu-repo/grantAgreement/MINECO//TEC2013-47037-C5-1-R/ES/SOLUCIONES TECNOLOGICAS COMPACTAS PARA DISPOSITIVOS PASIVOS DE ALTA FRECUENCIA CON RESPUESTAS AVANZADAS Y RECONFIGURABLES/
info:eu-repo/grantAgreement/ME//AP2010-4227/ES/AP2010-4227/ /
|
Descripción:
|
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
|
Agradecimientos:
|
This work was supported by the Spanish Ministerio de Economia y Competitividad under Project TEC2013-47360-C3-3-P and Project TEC2013-47037-C5-1-R and by the Spanish Ministerio de Educacion under FPU Research Fellowship ...[+]
This work was supported by the Spanish Ministerio de Economia y Competitividad under Project TEC2013-47360-C3-3-P and Project TEC2013-47037-C5-1-R and by the Spanish Ministerio de Educacion under FPU Research Fellowship Program AP2010-4227.
[-]
|
Tipo:
|
Artículo
|