Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Arias, Germán Eugenio | es_ES |
dc.contributor.author | Castellano Pérez, Mayte | es_ES |
dc.contributor.author | Tortosa-Viqueira, Maria | es_ES |
dc.contributor.author | Pallás Benet, Vicente | es_ES |
dc.contributor.author | Gomez, Gustavo Germán | es_ES |
dc.date.accessioned | 2017-06-23T12:25:44Z | |
dc.date.available | 2017-06-23T12:25:44Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 0305-1048 | |
dc.identifier.uri | http://hdl.handle.net/10251/83564 | |
dc.description.abstract | [EN] Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the 'Hop stunt viroid' accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle. | es_ES |
dc.description.sponsorship | The Spanish granting agency Direccion General de Investigacion Cientifica [BIO2011-25018 to V.P.] and from the Prometeo program [2011/003] from the Generalitat Valenciana. GM is the recipient of a Marie Curie IOF fellowship. Funding for open access charge: Direccion General de Investigacion Cientifica [BIO2011-25018]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Nucleic Acids Research | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Non-coding RNA | es_ES |
dc.subject | DNA methylation | es_ES |
dc.subject | Ribosoal RNA genes | es_ES |
dc.subject | Plants | es_ES |
dc.title | A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/nar/gkt968 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2011-25018/ES/TRAFICO INTRACELULAR, INTERCELULAR Y VASCULAR DE RNAS Y PROTEINAS VIRALES Y SUBVIRALES EN PLANTAS¿/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F125/ES/Efecto de la crioconservación de embriones sobre el desarrollo y el re-establecimiento de poblaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Martínez Arias, GE.; Castellano Pérez, M.; Tortosa-Viqueira, M.; Pallás Benet, V.; Gomez, GG. (2014). A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research. 42(3):1553-1562. https://doi.org/10.1093/nar/gkt968 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1093/nar/gkt968 | es_ES |
dc.description.upvformatpinicio | 1553 | es_ES |
dc.description.upvformatpfin | 1562 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 256837 | es_ES |
dc.identifier.eissn | 1362-4962 | |
dc.identifier.pmcid | PMC3919566 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 | es_ES |
dc.description.references | Ding, B. (2010). Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. Wiley Interdisciplinary Reviews: RNA, 1(3), 362-375. doi:10.1002/wrna.22 | es_ES |
dc.description.references | Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020 | es_ES |
dc.description.references | Zhao, Y., Hammond, R. W., & Owens, R. A. (2001). Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid. Journal of General Virology, 82(6), 1491-1497. doi:10.1099/0022-1317-82-6-1491 | es_ES |
dc.description.references | Gómez, G., & Pallas, V. (2012). Studies on Subcellular Compartmentalization of Plant Pathogenic Noncoding RNAs Give New Insights into the Intracellular RNA-Traffic Mechanisms. Plant Physiology, 159(2), 558-564. doi:10.1104/pp.112.195214 | es_ES |
dc.description.references | Navarro, J.-A., Vera, A., & Flores, R. (2000). A Chloroplastic RNA Polymerase Resistant to Tagetitoxin Is Involved in Replication of Avocado Sunblotch Viroid. Virology, 268(1), 218-225. doi:10.1006/viro.1999.0161 | es_ES |
dc.description.references | Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109 | es_ES |
dc.description.references | Nohales, M.-A., Molina-Serrano, D., Flores, R., & Daros, J.-A. (2012). Involvement of the Chloroplastic Isoform of tRNA Ligase in the Replication of Viroids Belonging to the Family Avsunviroidae. Journal of Virology, 86(15), 8269-8276. doi:10.1128/jvi.00629-12 | es_ES |
dc.description.references | Zhong, X., & Ding, B. (2008). Distinct RNA motifs mediate systemic RNA trafficking. Plant Signaling & Behavior, 3(1), 58-59. doi:10.4161/psb.3.1.4890 | es_ES |
dc.description.references | Gomez, G., & Pallas, V. (2004). A Long-Distance Translocatable Phloem Protein from Cucumber Forms a Ribonucleoprotein Complex In Vivo with Hop Stunt Viroid RNA. Journal of Virology, 78(18), 10104-10110. doi:10.1128/jvi.78.18.10104-10110.2004 | es_ES |
dc.description.references | Gómez, G., & Pallás, V. (2001). Identification of an In Vitro Ribonucleoprotein Complex Between a Viroid RNA and a Phloem Protein from Cucumber Plants. Molecular Plant-Microbe Interactions, 14(7), 910-913. doi:10.1094/mpmi.2001.14.7.910 | es_ES |
dc.description.references | Owens, R. A., Blackburn, M., & Ding, B. (2001). Possible Involvement of the Phloem Lectin in Long-Distance Viroid Movement. Molecular Plant-Microbe Interactions, 14(7), 905-909. doi:10.1094/mpmi.2001.14.7.905 | es_ES |
dc.description.references | Gómez, G., & Pallás, V. (2013). Viroids: a light in the darkness of thelncRNA-directed regulatory networks in plants. New Phytologist, 198(1), 10-15. doi:10.1111/nph.12196 | es_ES |
dc.description.references | Diener, T. O. (1981). Are viroids escaped introns? Proceedings of the National Academy of Sciences, 78(8), 5014-5015. doi:10.1073/pnas.78.8.5014 | es_ES |
dc.description.references | Haas, B., Klanner, A., Ramm, K., & Sänger, H. L. (1988). The 7S RNA from tomato leaf tissue resembles a signal recognition particle RNA and exhibits a remarkable sequence complementarity to viroids. The EMBO Journal, 7(13), 4063-4074. doi:10.1002/j.1460-2075.1988.tb03300.x | es_ES |
dc.description.references | Visvader, J. E., & Symons, R. H. (1985). Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Research, 13(8), 2907-2920. doi:10.1093/nar/13.8.2907 | es_ES |
dc.description.references | Schnölzer, M., Haas, B., Ramm, K., Hofmann, H., & Sänger, H. L. (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). The EMBO Journal, 4(9), 2181-2190. doi:10.1002/j.1460-2075.1985.tb03913.x | es_ES |
dc.description.references | Papaefthimiou, I. (2001). Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Research, 29(11), 2395-2400. doi:10.1093/nar/29.11.2395 | es_ES |
dc.description.references | Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101 | es_ES |
dc.description.references | Gómez, G., Martínez, G., & Pallás, V. (2009). Interplay between viroid-induced pathogenesis and RNA silencing pathways. Trends in Plant Science, 14(5), 264-269. doi:10.1016/j.tplants.2009.03.002 | es_ES |
dc.description.references | Gómez, G., Martínez, G., & Pallás, V. (2008). Viroid-Induced Symptoms in Nicotiana benthamiana Plants Are Dependent on RDR6 Activity. Plant Physiology, 148(1), 414-423. doi:10.1104/pp.108.120808 | es_ES |
dc.description.references | Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x | es_ES |
dc.description.references | Dowen, R. H., Pelizzola, M., Schmitz, R. J., Lister, R., Dowen, J. M., Nery, J. R., … Ecker, J. R. (2012). Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, 109(32), E2183-E2191. doi:10.1073/pnas.1209329109 | es_ES |
dc.description.references | Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11(3), 204-220. doi:10.1038/nrg2719 | es_ES |
dc.description.references | Matzke, M., Kanno, T., Daxinger, L., Huettel, B., & Matzke, A. J. (2009). RNA-mediated chromatin-based silencing in plants. Current Opinion in Cell Biology, 21(3), 367-376. doi:10.1016/j.ceb.2009.01.025 | es_ES |
dc.description.references | Zhang, X., Henderson, I. R., Lu, C., Green, P. J., & Jacobsen, S. E. (2007). Role of RNA polymerase IV in plant small RNA metabolism. Proceedings of the National Academy of Sciences, 104(11), 4536-4541. doi:10.1073/pnas.0611456104 | es_ES |
dc.description.references | Haag, J. R., & Pikaard, C. S. (2011). Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Reviews Molecular Cell Biology, 12(8), 483-492. doi:10.1038/nrm3152 | es_ES |
dc.description.references | Gong, Z., Morales-Ruiz, T., Ariza, R. R., Roldán-Arjona, T., David, L., & Zhu, J.-K. (2002). ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 111(6), 803-814. doi:10.1016/s0092-8674(02)01133-9 | es_ES |
dc.description.references | Nuthikattu, S., McCue, A. D., Panda, K., Fultz, D., DeFraia, C., Thomas, E. N., & Slotkin, R. K. (2013). The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs. Plant Physiology, 162(1), 116-131. doi:10.1104/pp.113.216481 | es_ES |
dc.description.references | Wassenegger, M., Heimes, S., Riedel, L., & Sänger, H. L. (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell, 76(3), 567-576. doi:10.1016/0092-8674(94)90119-8 | es_ES |
dc.description.references | Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroidStrains of Different Pathogenicity Induces and Suppresses Expression of Common and Unique Genes in Infected Tomato. Molecular Plant-Microbe Interactions, 15(10), 990-999. doi:10.1094/mpmi.2002.15.10.990 | es_ES |
dc.description.references | Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., & Baker, C. J. (2012). Global Analysis of Tomato Gene Expression DuringPotato spindle tuber viroidInfection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions, 25(4), 582-598. doi:10.1094/mpmi-09-11-0258 | es_ES |
dc.description.references | Tessitori, M., Maria, G., Capasso, C., Catara, G., Rizza, S., De Luca, V., … Carginale, V. (2007). Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1769(4), 228-235. doi:10.1016/j.bbaexp.2007.03.004 | es_ES |
dc.description.references | Herranz, M. C., Niehl, A., Rosales, M., Fiore, N., Zamorano, A., Granell, A., & Pallas, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virology Journal, 10(1). doi:10.1186/1743-422x-10-164 | es_ES |
dc.description.references | Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286 | es_ES |
dc.description.references | GÓMEZ, G., & PALLÁS, V. (2006). Hop stunt viroid is processed and translocated in transgenic Nicotiana benthamiana plants. Molecular Plant Pathology, 7(6), 511-517. doi:10.1111/j.1364-3703.2006.00356.x | es_ES |
dc.description.references | MARTINEZ, G., DONAIRE, L., LLAVE, C., PALLAS, V., & GOMEZ, G. (2010). High-throughput sequencing ofHop stunt viroid-derived small RNAs from cucumber leaves and phloem. Molecular Plant Pathology, 11(3), 347-359. doi:10.1111/j.1364-3703.2009.00608.x | es_ES |
dc.description.references | Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201 | es_ES |
dc.description.references | Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x | es_ES |
dc.description.references | Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 | es_ES |
dc.description.references | Martínez, G., Forment, J., Llave, C., Pallás, V., & Gómez, G. (2011). High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs. PLoS ONE, 6(5), e19523. doi:10.1371/journal.pone.0019523 | es_ES |
dc.description.references | Long, E. O., & Dawid, I. B. (1980). Repeated Genes in Eukaryotes. Annual Review of Biochemistry, 49(1), 727-764. doi:10.1146/annurev.bi.49.070180.003455 | es_ES |
dc.description.references | Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and Molecular Life Sciences, 65(15), 2334-2359. doi:10.1007/s00018-008-8027-0 | es_ES |
dc.description.references | Pontvianne, F., Blevins, T., Chandrasekhara, C., Feng, W., Stroud, H., Jacobsen, S. E., … Pikaard, C. S. (2012). Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes & Development, 26(9), 945-957. doi:10.1101/gad.182865.111 | es_ES |
dc.description.references | Preuss, S., & Pikaard, C. S. (2007). rRNA gene silencing and nucleolar dominance: Insights into a chromosome-scale epigenetic on/off switch. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1769(5-6), 383-392. doi:10.1016/j.bbaexp.2007.02.005 | es_ES |
dc.description.references | Earley, K. W., Pontvianne, F., Wierzbicki, A. T., Blevins, T., Tucker, S., Costa-Nunes, P., … Pikaard, C. S. (2010). Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes & Development, 24(11), 1119-1132. doi:10.1101/gad.1914110 | es_ES |
dc.description.references | Tucker, S., Vitins, A., & Pikaard, C. S. (2010). Nucleolar dominance and ribosomal RNA gene silencing. Current Opinion in Cell Biology, 22(3), 351-356. doi:10.1016/j.ceb.2010.03.009 | es_ES |
dc.description.references | Layat, E., Cotterell, S., Vaillant, I., Yukawa, Y., Tutois, S., & Tourmente, S. (2012). Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. The Plant Journal, 71(1), 35-44. doi:10.1111/j.1365-313x.2012.04948.x | es_ES |
dc.description.references | Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775 | es_ES |
dc.description.references | Yu, A., Lepere, G., Jay, F., Wang, J., Bapaume, L., Wang, Y., … Navarro, L. (2013). Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sciences, 110(6), 2389-2394. doi:10.1073/pnas.1211757110 | es_ES |
dc.description.references | Sha, A. H., Lin, X. H., Huang, J. B., & Zhang, D. P. (2005). Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 273(6), 484-490. doi:10.1007/s00438-005-1148-3 | es_ES |
dc.description.references | Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I., & Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants. Nucleic Acids Research, 35(5), 1714-1725. doi:10.1093/nar/gkm029 | es_ES |
dc.description.references | Rodríguez-Negrete, E., Lozano-Durán, R., Piedra-Aguilera, A., Cruzado, L., Bejarano, E. R., & Castillo, A. G. (2013). Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytologist, 199(2), 464-475. doi:10.1111/nph.12286 | es_ES |
dc.description.references | Vaillant, I., Tutois, S., Cuvillier, C., Schubert, I., & Tourmente, S. (2007). Regulation of Arabidopsis thaliana 5S rRNA Genes. Plant and Cell Physiology, 48(5), 745-752. doi:10.1093/pcp/pcm043 | es_ES |
dc.description.references | MÜHLBACH, H.-P., & SÄNGER, H. L. (1979). Viroid replication is inhibited by α-amanitin. Nature, 278(5700), 185-188. doi:10.1038/278185a0 | es_ES |
dc.description.references | Li, L.-C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431. doi:10.1093/bioinformatics/18.11.1427 | es_ES |