- -

A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Arias, Germán Eugenio es_ES
dc.contributor.author Castellano Pérez, Mayte es_ES
dc.contributor.author Tortosa-Viqueira, Maria es_ES
dc.contributor.author Pallás Benet, Vicente es_ES
dc.contributor.author Gomez, Gustavo Germán es_ES
dc.date.accessioned 2017-06-23T12:25:44Z
dc.date.available 2017-06-23T12:25:44Z
dc.date.issued 2014-02
dc.identifier.issn 0305-1048
dc.identifier.uri http://hdl.handle.net/10251/83564
dc.description.abstract [EN] Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the 'Hop stunt viroid' accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle. es_ES
dc.description.sponsorship The Spanish granting agency Direccion General de Investigacion Cientifica [BIO2011-25018 to V.P.] and from the Prometeo program [2011/003] from the Generalitat Valenciana. GM is the recipient of a Marie Curie IOF fellowship. Funding for open access charge: Direccion General de Investigacion Cientifica [BIO2011-25018]. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Non-coding RNA es_ES
dc.subject DNA methylation es_ES
dc.subject Ribosoal RNA genes es_ES
dc.subject Plants es_ES
dc.title A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkt968
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-25018/ES/TRAFICO INTRACELULAR, INTERCELULAR Y VASCULAR DE RNAS Y PROTEINAS VIRALES Y SUBVIRALES EN PLANTAS¿/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F125/ES/Efecto de la crioconservación de embriones sobre el desarrollo y el re-establecimiento de poblaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Martínez Arias, GE.; Castellano Pérez, M.; Tortosa-Viqueira, M.; Pallás Benet, V.; Gomez, GG. (2014). A non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research. 42(3):1553-1562. https://doi.org/10.1093/nar/gkt968 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1093/nar/gkt968 es_ES
dc.description.upvformatpinicio 1553 es_ES
dc.description.upvformatpfin 1562 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 256837 es_ES
dc.identifier.eissn 1362-4962
dc.identifier.pmcid PMC3919566
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 es_ES
dc.description.references Ding, B. (2010). Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. Wiley Interdisciplinary Reviews: RNA, 1(3), 362-375. doi:10.1002/wrna.22 es_ES
dc.description.references Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020 es_ES
dc.description.references Zhao, Y., Hammond, R. W., & Owens, R. A. (2001). Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid. Journal of General Virology, 82(6), 1491-1497. doi:10.1099/0022-1317-82-6-1491 es_ES
dc.description.references Gómez, G., & Pallas, V. (2012). Studies on Subcellular Compartmentalization of Plant Pathogenic Noncoding RNAs Give New Insights into the Intracellular RNA-Traffic Mechanisms. Plant Physiology, 159(2), 558-564. doi:10.1104/pp.112.195214 es_ES
dc.description.references Navarro, J.-A., Vera, A., & Flores, R. (2000). A Chloroplastic RNA Polymerase Resistant to Tagetitoxin Is Involved in Replication of Avocado Sunblotch Viroid. Virology, 268(1), 218-225. doi:10.1006/viro.1999.0161 es_ES
dc.description.references Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109 es_ES
dc.description.references Nohales, M.-A., Molina-Serrano, D., Flores, R., & Daros, J.-A. (2012). Involvement of the Chloroplastic Isoform of tRNA Ligase in the Replication of Viroids Belonging to the Family Avsunviroidae. Journal of Virology, 86(15), 8269-8276. doi:10.1128/jvi.00629-12 es_ES
dc.description.references Zhong, X., & Ding, B. (2008). Distinct RNA motifs mediate systemic RNA trafficking. Plant Signaling & Behavior, 3(1), 58-59. doi:10.4161/psb.3.1.4890 es_ES
dc.description.references Gomez, G., & Pallas, V. (2004). A Long-Distance Translocatable Phloem Protein from Cucumber Forms a Ribonucleoprotein Complex In Vivo with Hop Stunt Viroid RNA. Journal of Virology, 78(18), 10104-10110. doi:10.1128/jvi.78.18.10104-10110.2004 es_ES
dc.description.references Gómez, G., & Pallás, V. (2001). Identification of an In Vitro Ribonucleoprotein Complex Between a Viroid RNA and a Phloem Protein from Cucumber Plants. Molecular Plant-Microbe Interactions, 14(7), 910-913. doi:10.1094/mpmi.2001.14.7.910 es_ES
dc.description.references Owens, R. A., Blackburn, M., & Ding, B. (2001). Possible Involvement of the Phloem Lectin in Long-Distance Viroid Movement. Molecular Plant-Microbe Interactions, 14(7), 905-909. doi:10.1094/mpmi.2001.14.7.905 es_ES
dc.description.references Gómez, G., & Pallás, V. (2013). Viroids: a light in the darkness of thelncRNA-directed regulatory networks in plants. New Phytologist, 198(1), 10-15. doi:10.1111/nph.12196 es_ES
dc.description.references Diener, T. O. (1981). Are viroids escaped introns? Proceedings of the National Academy of Sciences, 78(8), 5014-5015. doi:10.1073/pnas.78.8.5014 es_ES
dc.description.references Haas, B., Klanner, A., Ramm, K., & Sänger, H. L. (1988). The 7S RNA from tomato leaf tissue resembles a signal recognition particle RNA and exhibits a remarkable sequence complementarity to viroids. The EMBO Journal, 7(13), 4063-4074. doi:10.1002/j.1460-2075.1988.tb03300.x es_ES
dc.description.references Visvader, J. E., & Symons, R. H. (1985). Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Research, 13(8), 2907-2920. doi:10.1093/nar/13.8.2907 es_ES
dc.description.references Schnölzer, M., Haas, B., Ramm, K., Hofmann, H., & Sänger, H. L. (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). The EMBO Journal, 4(9), 2181-2190. doi:10.1002/j.1460-2075.1985.tb03913.x es_ES
dc.description.references Papaefthimiou, I. (2001). Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Research, 29(11), 2395-2400. doi:10.1093/nar/29.11.2395 es_ES
dc.description.references Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101 es_ES
dc.description.references Gómez, G., Martínez, G., & Pallás, V. (2009). Interplay between viroid-induced pathogenesis and RNA silencing pathways. Trends in Plant Science, 14(5), 264-269. doi:10.1016/j.tplants.2009.03.002 es_ES
dc.description.references Gómez, G., Martínez, G., & Pallás, V. (2008). Viroid-Induced Symptoms in Nicotiana benthamiana Plants Are Dependent on RDR6 Activity. Plant Physiology, 148(1), 414-423. doi:10.1104/pp.108.120808 es_ES
dc.description.references Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x es_ES
dc.description.references Dowen, R. H., Pelizzola, M., Schmitz, R. J., Lister, R., Dowen, J. M., Nery, J. R., … Ecker, J. R. (2012). Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, 109(32), E2183-E2191. doi:10.1073/pnas.1209329109 es_ES
dc.description.references Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11(3), 204-220. doi:10.1038/nrg2719 es_ES
dc.description.references Matzke, M., Kanno, T., Daxinger, L., Huettel, B., & Matzke, A. J. (2009). RNA-mediated chromatin-based silencing in plants. Current Opinion in Cell Biology, 21(3), 367-376. doi:10.1016/j.ceb.2009.01.025 es_ES
dc.description.references Zhang, X., Henderson, I. R., Lu, C., Green, P. J., & Jacobsen, S. E. (2007). Role of RNA polymerase IV in plant small RNA metabolism. Proceedings of the National Academy of Sciences, 104(11), 4536-4541. doi:10.1073/pnas.0611456104 es_ES
dc.description.references Haag, J. R., & Pikaard, C. S. (2011). Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Reviews Molecular Cell Biology, 12(8), 483-492. doi:10.1038/nrm3152 es_ES
dc.description.references Gong, Z., Morales-Ruiz, T., Ariza, R. R., Roldán-Arjona, T., David, L., & Zhu, J.-K. (2002). ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 111(6), 803-814. doi:10.1016/s0092-8674(02)01133-9 es_ES
dc.description.references Nuthikattu, S., McCue, A. D., Panda, K., Fultz, D., DeFraia, C., Thomas, E. N., & Slotkin, R. K. (2013). The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs. Plant Physiology, 162(1), 116-131. doi:10.1104/pp.113.216481 es_ES
dc.description.references Wassenegger, M., Heimes, S., Riedel, L., & Sänger, H. L. (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell, 76(3), 567-576. doi:10.1016/0092-8674(94)90119-8 es_ES
dc.description.references Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroidStrains of Different Pathogenicity Induces and Suppresses Expression of Common and Unique Genes in Infected Tomato. Molecular Plant-Microbe Interactions, 15(10), 990-999. doi:10.1094/mpmi.2002.15.10.990 es_ES
dc.description.references Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., & Baker, C. J. (2012). Global Analysis of Tomato Gene Expression DuringPotato spindle tuber viroidInfection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions, 25(4), 582-598. doi:10.1094/mpmi-09-11-0258 es_ES
dc.description.references Tessitori, M., Maria, G., Capasso, C., Catara, G., Rizza, S., De Luca, V., … Carginale, V. (2007). Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1769(4), 228-235. doi:10.1016/j.bbaexp.2007.03.004 es_ES
dc.description.references Herranz, M. C., Niehl, A., Rosales, M., Fiore, N., Zamorano, A., Granell, A., & Pallas, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virology Journal, 10(1). doi:10.1186/1743-422x-10-164 es_ES
dc.description.references Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286 es_ES
dc.description.references GÓMEZ, G., & PALLÁS, V. (2006). Hop stunt viroid is processed and translocated in transgenic Nicotiana benthamiana plants. Molecular Plant Pathology, 7(6), 511-517. doi:10.1111/j.1364-3703.2006.00356.x es_ES
dc.description.references MARTINEZ, G., DONAIRE, L., LLAVE, C., PALLAS, V., & GOMEZ, G. (2010). High-throughput sequencing ofHop stunt viroid-derived small RNAs from cucumber leaves and phloem. Molecular Plant Pathology, 11(3), 347-359. doi:10.1111/j.1364-3703.2009.00608.x es_ES
dc.description.references Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201 es_ES
dc.description.references Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x es_ES
dc.description.references Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 es_ES
dc.description.references Martínez, G., Forment, J., Llave, C., Pallás, V., & Gómez, G. (2011). High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs. PLoS ONE, 6(5), e19523. doi:10.1371/journal.pone.0019523 es_ES
dc.description.references Long, E. O., & Dawid, I. B. (1980). Repeated Genes in Eukaryotes. Annual Review of Biochemistry, 49(1), 727-764. doi:10.1146/annurev.bi.49.070180.003455 es_ES
dc.description.references Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and Molecular Life Sciences, 65(15), 2334-2359. doi:10.1007/s00018-008-8027-0 es_ES
dc.description.references Pontvianne, F., Blevins, T., Chandrasekhara, C., Feng, W., Stroud, H., Jacobsen, S. E., … Pikaard, C. S. (2012). Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes & Development, 26(9), 945-957. doi:10.1101/gad.182865.111 es_ES
dc.description.references Preuss, S., & Pikaard, C. S. (2007). rRNA gene silencing and nucleolar dominance: Insights into a chromosome-scale epigenetic on/off switch. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1769(5-6), 383-392. doi:10.1016/j.bbaexp.2007.02.005 es_ES
dc.description.references Earley, K. W., Pontvianne, F., Wierzbicki, A. T., Blevins, T., Tucker, S., Costa-Nunes, P., … Pikaard, C. S. (2010). Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes & Development, 24(11), 1119-1132. doi:10.1101/gad.1914110 es_ES
dc.description.references Tucker, S., Vitins, A., & Pikaard, C. S. (2010). Nucleolar dominance and ribosomal RNA gene silencing. Current Opinion in Cell Biology, 22(3), 351-356. doi:10.1016/j.ceb.2010.03.009 es_ES
dc.description.references Layat, E., Cotterell, S., Vaillant, I., Yukawa, Y., Tutois, S., & Tourmente, S. (2012). Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. The Plant Journal, 71(1), 35-44. doi:10.1111/j.1365-313x.2012.04948.x es_ES
dc.description.references Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775 es_ES
dc.description.references Yu, A., Lepere, G., Jay, F., Wang, J., Bapaume, L., Wang, Y., … Navarro, L. (2013). Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sciences, 110(6), 2389-2394. doi:10.1073/pnas.1211757110 es_ES
dc.description.references Sha, A. H., Lin, X. H., Huang, J. B., & Zhang, D. P. (2005). Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 273(6), 484-490. doi:10.1007/s00438-005-1148-3 es_ES
dc.description.references Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I., & Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants. Nucleic Acids Research, 35(5), 1714-1725. doi:10.1093/nar/gkm029 es_ES
dc.description.references Rodríguez-Negrete, E., Lozano-Durán, R., Piedra-Aguilera, A., Cruzado, L., Bejarano, E. R., & Castillo, A. G. (2013). Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytologist, 199(2), 464-475. doi:10.1111/nph.12286 es_ES
dc.description.references Vaillant, I., Tutois, S., Cuvillier, C., Schubert, I., & Tourmente, S. (2007). Regulation of Arabidopsis thaliana 5S rRNA Genes. Plant and Cell Physiology, 48(5), 745-752. doi:10.1093/pcp/pcm043 es_ES
dc.description.references MÜHLBACH, H.-P., & SÄNGER, H. L. (1979). Viroid replication is inhibited by α-amanitin. Nature, 278(5700), 185-188. doi:10.1038/278185a0 es_ES
dc.description.references Li, L.-C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431. doi:10.1093/bioinformatics/18.11.1427 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem