- -

Citrus tristeza virus infection induces the accumulation of viral small RNAs (21- 24-nt) mapping preferentially at the 3 -terminal region of the genomic RNA and affects the host small RNA profile

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrus tristeza virus infection induces the accumulation of viral small RNAs (21- 24-nt) mapping preferentially at the 3 -terminal region of the genomic RNA and affects the host small RNA profile

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Ruiz, Susana es_ES
dc.contributor.author Navarro, Beatriz es_ES
dc.contributor.author Gisel, Andreas es_ES
dc.contributor.author Peña, Leandro es_ES
dc.contributor.author Navarro, Luis es_ES
dc.contributor.author Moreno, Pedro es_ES
dc.contributor.author Di Serio, Francesco es_ES
dc.contributor.author Flores Pedauye, Ricardo es_ES
dc.date.accessioned 2017-06-26T07:08:35Z
dc.date.available 2017-06-26T07:08:35Z
dc.date.issued 2011-04
dc.identifier.issn 0167-4412
dc.identifier.uri http://hdl.handle.net/10251/83585
dc.description.abstract [EN] To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21-22-nt, with a biased distribution of their 5' nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3'-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3' co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation. es_ES
dc.description.sponsorship This research was supported by a grant (Prometeo/2008/121) from the Generalitat Valenciana, Spain, and by an aid (PAID-02-10/2180) from the Program for Research and Development of the Universidad Politecnica de Valencia. We are grateful to Jaime Piquer and Pablo Lemos for technical support in the greenhouse and with the illustrations, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Plant Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Closteroviruses es_ES
dc.subject MicroRNAs es_ES
dc.subject RNA silencing es_ES
dc.subject Small interfering RNAs es_ES
dc.title Citrus tristeza virus infection induces the accumulation of viral small RNAs (21- 24-nt) mapping preferentially at the 3 -terminal region of the genomic RNA and affects the host small RNA profile es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11103-011-9754-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F121/ES/Biotecnología de cítricos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Ruiz Ruiz, S.; Navarro, B.; Gisel, A.; Peña, L.; Navarro, L.; Moreno, P.; Di Serio, F.... (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21- 24-nt) mapping preferentially at the 3 -terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology. 75(6):607-619. https://doi.org/10.1007/s11103-011-9754-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11103-011-9754-4 es_ES
dc.description.upvformatpinicio 607 es_ES
dc.description.upvformatpfin 619 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 75 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 218101 es_ES
dc.identifier.pmid 21327514
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Albiach-Martí MR, Grosser JW, Gowda S, Mawassi M, Tatineni S, Garnsey SM, Dawson WO (2004) Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Mol Breed 14:117–128 es_ES
dc.description.references Albiach-Martí MR, Robertson C, Gowda S, Tatineni S, Belliure B, Garnsey SM, Folimonova SY, Moreno P, Dawson WO (2010) The pathogenicity determinant of citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol 11:55–67 es_ES
dc.description.references Aliyari R, Wu QF, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–397 es_ES
dc.description.references Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410 es_ES
dc.description.references Ancillo G, Gadea J, Forment J, Guerri J, Navarro L (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933 es_ES
dc.description.references Aramburu J, Navas-Castillo J, Moreno P, Cambra M (1991) Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. J Virol Methods 33:1–11 es_ES
dc.description.references Azevedo J, García D, Pontier D, Ohnesorge S, Yu A, García S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:853–856 es_ES
dc.description.references Bar-Joseph M, Dawson WO (2008) Citrus tristeza virus. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, Oxford, pp 520–525 es_ES
dc.description.references Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933 es_ES
dc.description.references Bellamy AR, Ralph RK (1968) Recovery and purification of nucleic acids by means of cetyltrimethylammonium bromide. Methods Enzymol 12B:156–160 es_ES
dc.description.references Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71 es_ES
dc.description.references Curtin SJ, Watson JM, Smith NA, Eamens AL, Blanchard CL, Waterhouse PM (2008) The roles of plant dsRNA-binding proteins in RNAi-like pathways. FEBS Lett 582:2753–2760 es_ES
dc.description.references Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553 es_ES
dc.description.references Deleris A, Gallego-Bartolomé J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71 es_ES
dc.description.references Díaz-Pendón JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326 es_ES
dc.description.references Ding SW (2010) RNA-based antiviral immunity. Nature Rev Immunol 10:632–644 es_ES
dc.description.references Di Serio F, Gisel A, Navarro B, Delgado S, Martínez de Alba AE, Donvito G, Flores R (2009) Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS ONE 4:e7539 es_ES
dc.description.references Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R (2010) RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a nuclear-replicating viroid. J Virol 84:2477–2489 es_ES
dc.description.references Dolgosheina EV, Morin RD, Aksay G, Sahinalp SC, Magrini V, Mardis ER, Mattsson J, Unrau PJ (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515 es_ES
dc.description.references Donaire L, Barajas D, Martínez-García B, Martínez-Priego L, Pagán I, Llave C (2008) Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol 82:5167–5177 es_ES
dc.description.references Donaire L, Wang Y, González-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214 es_ES
dc.description.references Fagoaga C, López C, Moreno P, Navarro L, Flores R, Peña L (2005) Viral-like symptoms induced by the ectopic expression of the p23 of citrus tristeza virus are citrus specific and do not correlate with the patogenicity of the virus strain. Mol Plant-Microbe Interact 18:435–445 es_ES
dc.description.references Fagoaga C, López C, Hermoso de Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 66:153–165 es_ES
dc.description.references Folimonova SY, Folimonov AS, Tatineni S, Dawson WO (2008) Citrus tristeza virus: survival at the edge of the movement continuum. J Virol 82:6546–6556 es_ES
dc.description.references Ghorbel R, López C, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2001) Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36 es_ES
dc.description.references Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952 es_ES
dc.description.references Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM (1995) Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582 es_ES
dc.description.references Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO (1995) Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520 es_ES
dc.description.references Kreuze JF, Pérez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7 es_ES
dc.description.references López C, Navas-Castillo J, Gowda S, Moreno P, Flores R (2000) The 23 kDa protein coded by the 3′-terminal gene of citrus tristeza virus is an RNA-binding protein. Virology 269:462–470 es_ES
dc.description.references López C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against citrus tristeza virus (CTV) in transgenic Mexican lime. Mol Plant Pathol 11:33–41 es_ES
dc.description.references Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747 es_ES
dc.description.references Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127 es_ES
dc.description.references Moissiard G, Voinnet O (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA 103:19593–19598 es_ES
dc.description.references Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818 es_ES
dc.description.references Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141 es_ES
dc.description.references Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629–639 es_ES
dc.description.references Moreno P, Guerri J, Muñoz N (1990) Identification of Spanish strains of citrus tristeza virus (CTV) by analysis of double-stranded RNAs (dsRNA). Phytopathology 80:477–482 es_ES
dc.description.references Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268 es_ES
dc.description.references Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584 es_ES
dc.description.references Navas-Castillo J, Albiach-Martí MR, Gowda S, Hilf ME, Garnsey SM, Dawson WO (1997) Kinetics of accumulation of citrus tristeza virus RNAs. Virology 228:92–97 es_ES
dc.description.references Omarov RT, Cioperlik JJ, Sholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci USA 104:1714–1719 es_ES
dc.description.references Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806 es_ES
dc.description.references Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428 es_ES
dc.description.references Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci USA 105:14732–14737 es_ES
dc.description.references Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2006) The complete nucleotide sequence of a severe stem pitting isolate of citrus tristeza virus from Spain: comparison with isolates from different origins. Arch Virol 151:387–398 es_ES
dc.description.references Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2007) A real-time RT-PCR assay for detection and absolute quantitation of citrus tristeza virus in different plant tissues. J Virol Methods 145:96–105 es_ES
dc.description.references Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Rabindram R, Dawson WO (2002) The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483 es_ES
dc.description.references Smith NA, Eamens AL, Wang MB (2010) The presence of high-molecular-weight viral RNAs interferes with the detection of viral small RNAs. RNA 16:1062–1067 es_ES
dc.description.references Song C, Fang J, Li X, Liu H, Thomas-Chao C (2007) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685 es_ES
dc.description.references Szittya G, Moxon S, Pantaleo V, Toth G, Rusholme-Pilcher RL, Moulton V, Burgyán J, Dalmay T (2010) Structural and functional analysis of viral siRNAs. PLoS Pathog 6:e1000838 es_ES
dc.description.references Varallyay E, Valoczi A, Agyi A, Burgyán J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519 es_ES
dc.description.references Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358 es_ES
dc.description.references Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136 es_ES
dc.description.references Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328 es_ES
dc.description.references Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151 es_ES
dc.description.references Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064 es_ES
dc.description.references Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492 es_ES
dc.description.references Yi K, Richards EJ (2007) A cluster of disease resistance genes in arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19:2929–2939 es_ES
dc.description.references Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem