- -

Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author José Hernández-Orallo es_ES
dc.date.accessioned 2017-06-26T08:56:40Z
dc.date.available 2017-06-26T08:56:40Z
dc.date.issued 2016-08-19
dc.identifier.issn 0269-2821
dc.identifier.uri http://hdl.handle.net/10251/83598
dc.description The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10462-016-9505-7. es_ES
dc.description.abstract The evaluation of artificial intelligence systems and components is crucial for the progress of the discipline. In this paper we describe and critically assess the different ways AI systems are evaluated, and the role of components and techniques in these systems. We first focus on the traditional task-oriented evaluation approach. We identify three kinds of evaluation: human discrimination, problem benchmarks and peer confrontation. We describe some of the limitations of the many evaluation schemes and competitions in these three categories, and follow the progression of some of these tests. We then focus on a less customary (and challenging) ability-oriented evaluation approach, where a system is characterised by its (cognitive) abilities, rather than by the tasks it is designed to solve. We discuss several possibilities: the adaptation of cognitive tests used for humans and animals, the development of tests derived from algorithmic information theory or more integrated approaches under the perspective of universal psychometrics. We analyse some evaluation tests from AI that are better positioned for an ability-oriented evaluation and discuss how their problems and limitations can possibly be addressed with some of the tools and ideas that appear within the paper. Finally, we enumerate a series of lessons learnt and generic guidelines to be used when an AI evaluation scheme is under consideration. es_ES
dc.description.sponsorship I thank the organisers of the AEPIA Summer School On Artificial Intelligence, held in September 2014, for giving me the opportunity to give a lecture on 'AI Evaluation'. This paper was born out of and evolved through that lecture. The information about many benchmarks and competitions discussed in this paper have been contrasted with information from and discussions with many people: M. Bedia, A. Cangelosi, C. Dimitrakakis, I. GarcIa-Varea, Katja Hofmann, W. Langdon, E. Messina, S. Mueller, M. Siebers and C. Soares. Figure 4 is courtesy of F. Martinez-Plumed. Finally, I thank the anonymous reviewers, whose comments have helped to significantly improve the balance and coverage of the paper. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under Grants TIN 2013-45732-C4-1-P, TIN 2015-69175-C4-1-R and by Generalitat Valenciana PROMETEOII2015/013. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Artificial Intelligence Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AI evaluation es_ES
dc.subject AI competitions es_ES
dc.subject Machine intelligence es_ES
dc.subject Cognitive abilities es_ES
dc.subject Universal psychometrics es_ES
dc.subject Turing test es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10462-016-9505-7
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-45732-C4-1-P/ES/UNA APROXIMACION DECLARATIVA AL MODELADO, ANALISIS Y RESOLUCION DE PROBLEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation José Hernández-Orallo (2016). Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement. Artificial Intelligence Review. 1-51. https://doi.org/10.1007/s10462-016-9505-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://link.springer.com/article/10.1007/s10462-016-9505-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 327775 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abel D, Agarwal A, Diaz F, Krishnamurthy A, Schapire RE (2016) Exploratory gradient boosting for reinforcement learning in complex domains. arXiv preprint arXiv:1603.04119 es_ES
dc.description.references Adams S, Arel I, Bach J, Coop R, Furlan R, Goertzel B, Hall JS, Samsonovich A, Scheutz M, Schlesinger M, Shapiro SC, Sowa J (2012) Mapping the landscape of human-level artificial general intelligence. AI Mag 33(1):25–42 es_ES
dc.description.references Adams SS, Banavar G, Campbell M (2016) I-athlon: towards a multi-dimensional Turing test. AI Mag 37(1):78–84 es_ES
dc.description.references Alcalá J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2010) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult Valued Logic Soft Comput 17:255–287 es_ES
dc.description.references Alexander JRM, Smales S (1997) Intelligence, learning and long-term memory. Personal Individ Differ 23(5):815–825 es_ES
dc.description.references Alpcan T, Everitt T, Hutter M (2014) Can we measure the difficulty of an optimization problem? In: IEEE information theory workshop (ITW) es_ES
dc.description.references Alur R, Bodik R, Juniwal G, Martin MMK, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A, Torlak E, Udupa A (2013) Syntax-guided synthesis. In: Formal methods in computer-aided design (FMCAD), 2013, IEEE, pp 1–17 es_ES
dc.description.references Alvarado N, Adams SS, Burbeck S, Latta C (2002) Beyond the Turing test: performance metrics for evaluating a computer simulation of the human mind. In: Proceedings of the 2nd international conference on development and learning, IEEE, pp 147–152 es_ES
dc.description.references Amigoni F, Bastianelli E, Berghofer J, Bonarini A, Fontana G, Hochgeschwender N, Iocchi L, Kraetzschmar G, Lima P, Matteucci M, Miraldo P, Nardi D, Schiaffonati V (2015) Competitions for benchmarking: task and functionality scoring complete performance assessment. IEEE Robot Autom Mag 22(3):53–61 es_ES
dc.description.references Anderson J, Lebiere C (2003) The Newell test for a theory of cognition. Behav Brain Sci 26(5):587–601 es_ES
dc.description.references Anderson J, Baltes J, Cheng CT (2011) Robotics competitions as benchmarks for AI research. Knowl Eng Rev 26(01):11–17 es_ES
dc.description.references Arel I, Rose DC, Karnowski TP (2010) Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 5(4):13–18 es_ES
dc.description.references Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T, Yoshikawa Y, Ogino M, Yoshida C (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Ment Dev 1(1):12–34 es_ES
dc.description.references Aziz H, Brill M, Fischer F, Harrenstein P, Lang J, Seedig HG (2015) Possible and necessary winners of partial tournaments. J Artif Intell Res 54:493–534 es_ES
dc.description.references Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml es_ES
dc.description.references Bagnall AJ, Zatuchna ZV (2005) On the classification of maze problems. In: Bull L, Kovacs T (eds) Foundations of learning classifier system. Studies in fuzziness and soft computing, vol. 183, Springer, pp 305–316. http://rd.springer.com/chapter/10.1007/11319122_12 es_ES
dc.description.references Baldwin D, Yadav SB (1995) The process of research investigations in artificial intelligence - a unified view. IEEE Trans Syst Man Cybern 25(5):852–861 es_ES
dc.description.references Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an evaluation platform for general agents. J Artif Intell Res 47:253–279 es_ES
dc.description.references Besold TR (2014) A note on chances and limitations of psychometric ai. In: KI 2014: advances in artificial intelligence. Springer, pp 49–54 es_ES
dc.description.references Biever C (2011) Ultimate IQ: one test to rule them all. New Sci 211(2829, 10 September 2011):42–45 es_ES
dc.description.references Borg M, Johansen SS, Thomsen DL, Kraus M (2012) Practical implementation of a graphics Turing test. In: Advances in visual computing. Springer, pp 305–313 es_ES
dc.description.references Boring EG (1923) Intelligence as the tests test it. New Repub 35–37 es_ES
dc.description.references Bostrom N (2014) Superintelligence: paths, dangers, strategies. Oxford University Press, Oxford es_ES
dc.description.references Brazdil P, Carrier CG, Soares C, Vilalta R (2008) Metalearning: applications to data mining. Springer, New York es_ES
dc.description.references Bringsjord S (2011) Psychometric artificial intelligence. J Exp Theor Artif Intell 23(3):271–277 es_ES
dc.description.references Bringsjord S, Schimanski B (2003) What is artificial intelligence? Psychometric AI as an answer. In: International joint conference on artificial intelligence, pp 887–893 es_ES
dc.description.references Brundage M (2016) Modeling progress in ai. AAAI 2016 Workshop on AI, Ethics, and Society es_ES
dc.description.references Buchanan BG (1988) Artificial intelligence as an experimental science. Springer, New York es_ES
dc.description.references Buhrmester M, Kwang T, Gosling SD (2011) Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data? Perspect Psychol Sci 6(1):3–5 es_ES
dc.description.references Bursztein E, Aigrain J, Moscicki A, Mitchell JC (2014) The end is nigh: generic solving of text-based captchas. In: Proceedings of the 8th USENIX conference on Offensive Technologies, USENIX Association, p 3 es_ES
dc.description.references Campbell M, Hoane AJ, Hsu F (2002) Deep Blue. Artif Intell 134(1–2):57–83 es_ES
dc.description.references Cangelosi A, Schlesinger M, Smith LB (2015) Developmental robotics: from babies to robots. MIT Press, Cambridge es_ES
dc.description.references Caputo B, Müller H, Martinez-Gomez J, Villegas M, Acar B, Patricia N, Marvasti N, Üsküdarlı S, Paredes R, Cazorla M et al (2014) Imageclef 2014: overview and analysis of the results. In: Information access evaluation. Multilinguality, multimodality, and interaction, Springer, pp 192–211 es_ES
dc.description.references Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER Jr, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, vol 5, p 3 es_ES
dc.description.references Carroll JB (1993) Human cognitive abilities: a survey of factor-analytic studies. Cambridge University Press, Cambridge es_ES
dc.description.references Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75 es_ES
dc.description.references Chaitin GJ (1982) Gödel’s theorem and information. Int J Theor Phys 21(12):941–954 es_ES
dc.description.references Chandrasekaran B (1990) What kind of information processing is intelligence? In: The foundation of artificial intelligence—a sourcebook. Cambridge University Press, pp 14–46 es_ES
dc.description.references Chater N (1999) The search for simplicity: a fundamental cognitive principle? Q J Exp Psychol Sect A 52(2):273–302 es_ES
dc.description.references Chater N, Vitányi P (2003) Simplicity: a unifying principle in cognitive science? Trends Cogn Sci 7(1):19–22 es_ES
dc.description.references Chu Z, Gianvecchio S, Wang H, Jajodia S (2010) Who is tweeting on twitter: human, bot, or cyborg? In: Proceedings of the 26th annual computer security applications conference, ACM, pp 21–30 es_ES
dc.description.references Cochran WG (2007) Sampling techniques. Wiley, New York es_ES
dc.description.references Cohen PR, Howe AE (1988) How evaluation guides AI research: the message still counts more than the medium. AI Mag 9(4):35 es_ES
dc.description.references Cohen Y (2013) Testing and cognitive enhancement. Technical repor, National Institute for Testing and Evaluation, Jerusalem, Israel es_ES
dc.description.references Conrad JG, Zeleznikow J (2013) The significance of evaluation in AI and law: a case study re-examining ICAIL proceedings. In: Proceedings of the 14th international conference on artificial intelligence and law, ACM, pp 186–191 es_ES
dc.description.references Conrad JG, Zeleznikow J (2015) The role of evaluation in ai and law. In: Proceedings of the 15th international conference on artificial intelligence and law, pp 181–186 es_ES
dc.description.references Deary IJ, Der G, Ford G (2001) Reaction times and intelligence differences: a population-based cohort study. Intelligence 29(5):389–399 es_ES
dc.description.references Decker KS, Durfee EH, Lesser VR (1989) Evaluating research in cooperative distributed problem solving. Distrib Artif Intell 2:487–519 es_ES
dc.description.references Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30 es_ES
dc.description.references Detterman DK (2011) A challenge to Watson. Intelligence 39(2–3):77–78 es_ES
dc.description.references Dimitrakakis C (2016) Personal communication es_ES
dc.description.references Dimitrakakis C, Li G, Tziortziotis N (2014) The reinforcement learning competition 2014. AI Mag 35(3):61–65 es_ES
dc.description.references Dowe DL (2013) Introduction to Ray Solomonoff 85th memorial conference. In: Dowe DL (ed) Algorithmic probability and friends. Bayesian prediction and artificial intelligence, lecture notes in computer science, vol 7070. Springer, Berlin, pp 1–36 es_ES
dc.description.references Dowe DL, Hajek AR (1997) A computational extension to the Turing Test. In: Proceedings of the 4th conference of the Australasian cognitive science society, University of Newcastle, NSW, Australia es_ES
dc.description.references Dowe DL, Hajek AR (1998) A non-behavioural, computational extension to the Turing test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106 es_ES
dc.description.references Dowe DL, Hernández-Orallo J (2012) IQ tests are not for machines, yet. Intelligence 40(2):77–81 es_ES
dc.description.references Dowe DL, Hernández-Orallo J (2014) How universal can an intelligence test be? Adapt Behav 22(1):51–69 es_ES
dc.description.references Drummond C (2009) Replicability is not reproducibility: nor is it good science. In: Proceedings of the evaluation methods for machine learning workshop at the 26th ICML, Montreal, Canada es_ES
dc.description.references Drummond C, Japkowicz N (2010) Warning: statistical benchmarking is addictive. Kicking the habit in machine learning. J Exp Theor Artif Intell 22(1):67–80 es_ES
dc.description.references Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. arXiv preprint arXiv:1604.06778 es_ES
dc.description.references Eden AH, Moor JH, Soraker JH, Steinhart E (2013) Singularity hypotheses: a scientific and philosophical assessment. Springer, New York es_ES
dc.description.references Edmondson W (2012) The intelligence in ETI—what can we know? Acta Astronaut 78:37–42 es_ES
dc.description.references Elo AE (1978) The rating of chessplayers, past and present, vol 3. Batsford, London es_ES
dc.description.references Embretson SE, Reise SP (2000) Item response theory for psychologists. L. Erlbaum, Hillsdale es_ES
dc.description.references Evans JM, Messina ER (2001) Performance metrics for intelligent systems. NIST Special Publication SP, pp 101–104 es_ES
dc.description.references Everitt T, Lattimore T, Hutter M (2014) Free lunch for optimisation under the universal distribution. In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, pp 167–174 es_ES
dc.description.references Falkenauer E (1998) On method overfitting. J Heuristics 4(3):281–287 es_ES
dc.description.references Feldman J (2003) Simplicity and complexity in human concept learning. Gen Psychol 38(1):9–15 es_ES
dc.description.references Ferrando PJ (2009) Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Appl Psychol Meas 33(1):9–24 es_ES
dc.description.references Ferrando PJ (2012) Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica 33:111–139 es_ES
dc.description.references Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27–38 es_ES
dc.description.references Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock J, Nyberg E, Prager J et al (2010) Building Watson: an overview of the DeepQA project. AI Mag 31(3):59–79 es_ES
dc.description.references Fogel DB (1991) The evolution of intelligent decision making in gaming. Cybern Syst 22(2):223–236 es_ES
dc.description.references Gaschnig J, Klahr P, Pople H, Shortliffe E, Terry A (1983) Evaluation of expert systems: issues and case studies. Build Exp Syst 1:241–278 es_ES
dc.description.references Geissman JR, Schultz RD (1988) Verification & validation. AI Exp 3(2):26–33 es_ES
dc.description.references Genesereth M, Love N, Pell B (2005) General game playing: overview of the AAAI competition. AI Mag 26(2):62 es_ES
dc.description.references Gerónimo D, López AM (2014) Datasets and benchmarking. In: Vision-based pedestrian protection systems for intelligent vehicles. Springer, pp 87–93 es_ES
dc.description.references Goertzel B, Pennachin C (eds) (2007) Artificial general intelligence. Springer, New York es_ES
dc.description.references Goertzel B, Arel I, Scheutz M (2009) Toward a roadmap for human-level artificial general intelligence: embedding HLAI systems in broad, approachable, physical or virtual contexts. Artif Gen Intell Roadmap Initiat es_ES
dc.description.references Goldreich O, Vadhan S (2007) Special issue on worst-case versus average-case complexity editors’ foreword. Comput complex 16(4):325–330 es_ES
dc.description.references Gordon BB (2007) Report on panel discussion on (re-)establishing or increasing collaborative links between artificial intelligence and intelligent systems. In: Messina ER, Madhavan R (eds) Proceedings of the 2007 workshop on performance metrics for intelligent systems, pp 302–303 es_ES
dc.description.references Gulwani S, Hernández-Orallo J, Kitzelmann E, Muggleton SH, Schmid U, Zorn B (2015) Inductive programming meets the real world. Commun ACM 58(11):90–99 es_ES
dc.description.references Hand DJ (2004) Measurement theory and practice. A Hodder Arnold Publication, London es_ES
dc.description.references Hernández-Orallo J (2000a) Beyond the Turing test. J Logic Lang Inf 9(4):447–466 es_ES
dc.description.references Hernández-Orallo J (2000b) On the computational measurement of intelligence factors. In: Meystel A (ed) Performance metrics for intelligent systems workshop. National Institute of Standards and Technology, Gaithersburg, pp 1–8 es_ES
dc.description.references Hernández-Orallo J (2000c) Thesis: computational measures of information gain and reinforcement in inference processes. AI Commun 13(1):49–50 es_ES
dc.description.references Hernández-Orallo J (2010) A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Artificial general intelligence, 3rd International Conference. Atlantis Press, Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf , pp 182–183 es_ES
dc.description.references Hernández-Orallo J (2014) On environment difficulty and discriminating power. Auton Agents Multi-Agent Syst. 29(3):402–454. doi: 10.1007/s10458-014-9257-1 es_ES
dc.description.references Hernández-Orallo J, Dowe DL (2010) Measuring universal intelligence: towards an anytime intelligence test. Artif Intell 174(18):1508–1539 es_ES
dc.description.references Hernández-Orallo J, Dowe DL (2013) On potential cognitive abilities in the machine kingdom. Minds Mach 23:179–210 es_ES
dc.description.references Hernández-Orallo J, Minaya-Collado N (1998) A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proceedings of international symposium of engineering of intelligent systems (EIS’98), ICSC Press, pp 146–163 es_ES
dc.description.references Hernández-Orallo J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Insa-Cabrera J (2011) On more realistic environment distributions for defining, evaluating and developing intelligence. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 82–91 es_ES
dc.description.references Hernández-Orallo J, Flach P, Ferri C (2012a) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13(1):2813–2869 es_ES
dc.description.references Hernández-Orallo J, Insa-Cabrera J, Dowe DL, Hibbard B (2012b) Turing Tests with Turing machines. In: Voronkov A (ed) Turing-100, EPiC Series, vol 10, pp 140–156 es_ES
dc.description.references Hernández-Orallo J, Dowe DL, Hernández-Lloreda MV (2014) Universal psychometrics: measuring cognitive abilities in the machine kingdom. Cogn Syst Res 27:50–74 es_ES
dc.description.references Hernández-Orallo J, Martínez-Plumed F, Schmid U, Siebers M, Dowe DL (2016) Computer models solving intelligence test problems: progress and implications. Artif Intell 230:74–107 es_ES
dc.description.references Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366 es_ES
dc.description.references Hibbard B (2009) Bias and no free lunch in formal measures of intelligence. J Artif Gen Intell 1(1):54–61 es_ES
dc.description.references Hingston P (2010) A new design for a Turing Test for bots. In: 2010 IEEE symposium on computational intelligence and games (CIG), IEEE, pp 345–350 es_ES
dc.description.references Hingston P (2012) Believable bots: can computers play like people?. Springer, New York es_ES
dc.description.references Ho TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300 es_ES
dc.description.references Hutter M (2007) Universal algorithmic intelligence: a mathematical top $$\rightarrow $$ → down approach. In: Goertzel B, Pennachin C (eds) Artificial general intelligence, cognitive technologies. Springer, Berlin, pp 227–290 es_ES
dc.description.references Igel C, Toussaint M (2005) A no-free-lunch theorem for non-uniform distributions of target functions. J Math Model Algorithms 3(4):313–322 es_ES
dc.description.references Insa-Cabrera J (2016) Towards a universal test of social intelligence. Ph.D. thesis, Departament de Sistemes Informátics i Computació, UPV es_ES
dc.description.references Insa-Cabrera J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Hernández-Orallo J (2011a) Comparing humans and ai agents. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 122–132 es_ES
dc.description.references Insa-Cabrera J, Dowe DL, Hernández-Orallo J (2011) Evaluating a reinforcement learning algorithm with a general intelligence test. In: Lozano JA, Gamez JM (eds) Current topics in artificial intelligence. CAEPIA 2011, LNAI series 7023. Springer, New York es_ES
dc.description.references Insa-Cabrera J, Benacloch-Ayuso JL, Hernández-Orallo J (2012) On measuring social intelligence: experiments on competition and cooperation. In: Bach J, Goertzel B, Iklé M (eds) AGI, lecture notes in computer science, vol 7716. Springer, New York, pp 126–135 es_ES
dc.description.references Jacoff A, Messina E, Weiss BA, Tadokoro S, Nakagawa Y (2003) Test arenas and performance metrics for urban search and rescue robots. In: Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS 2003), IEEE, vol 4, pp 3396–3403 es_ES
dc.description.references Japkowicz N, Shah M (2011) Evaluating learning algorithms. Cambridge University Press, Cambridge es_ES
dc.description.references Jiang J (2008) A literature survey on domain adaptation of statistical classifiers. http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey es_ES
dc.description.references Johnson M, Hofmann K, Hutton T, Bignell D (2016) The Malmo platform for artificial intelligence experimentation. In: International joint conference on artificial intelligence (IJCAI) es_ES
dc.description.references Keith TZ, Reynolds MR (2010) Cattell–Horn–Carroll abilities and cognitive tests: what we’ve learned from 20 years of research. Psychol Schools 47(7):635–650 es_ES
dc.description.references Ketter W, Symeonidis A (2012) Competitive benchmarking: lessons learned from the trading agent competition. AI Mag 33(2):103 es_ES
dc.description.references Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of HMM parameters. Inf Sci 197:105–130 es_ES
dc.description.references Kim JH (2004) Soccer robotics, vol 11. Springer, New York es_ES
dc.description.references Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E (1997) Robocup: the robot world cup initiative. In: Proceedings of the first international conference on autonomous agents, ACM, pp 340–347 es_ES
dc.description.references Kleiner K (2011) Who are you calling bird-brained? An attempt is being made to devise a universal intelligence test. Economist 398(8723, 5 March 2011):82 es_ES
dc.description.references Knuth DE (1973) Sorting and searching, volume 3 of the art of computer programming. Addison-Wesley, Reading es_ES
dc.description.references Koza JR (2010) Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11(3–4):251–284 es_ES
dc.description.references Krueger J, Osherson D (1980) On the psychology of structural simplicity. In: Jusczyk PW, Klein RM (eds) The nature of thought: essays in honor of D. O. Hebb. Psychology Press, London, pp 187–205 es_ES
dc.description.references Langford J (2005) Clever methods of overfitting. Machine Learning (Theory). http://hunch.net es_ES
dc.description.references Langley P (1987) Research papers in machine learning. Mach Learn 2(3):195–198 es_ES
dc.description.references Langley P (2011) The changing science of machine learning. Mach Learn 82(3):275–279 es_ES
dc.description.references Langley P (2012) The cognitive systems paradigm. Adv Cogn Syst 1:3–13 es_ES
dc.description.references Lattimore T, Hutter M (2013) No free lunch versus Occam’s razor in supervised learning. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 223–235 es_ES
dc.description.references Leeuwenberg ELJ, Van Der Helm PA (2012) Structural information theory: the simplicity of visual form. Cambridge University Press, Cambridge es_ES
dc.description.references Legg S, Hutter M (2007a) Tests of machine intelligence. In: Lungarella M, Iida F, Bongard J, Pfeifer R (eds) 50 Years of Artificial Intelligence, Lecture Notes in Computer Science, vol 4850, Springer Berlin Heidelberg, pp 232–242. doi: 10.1007/978-3-540-77296-5_22 es_ES
dc.description.references Legg S, Hutter M (2007b) Universal intelligence: a definition of machine intelligence. Minds Mach 17(4):391–444 es_ES
dc.description.references Legg S, Veness J (2013) An approximation of the universal intelligence measure. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 236–249 es_ES
dc.description.references Levesque HJ (2014) On our best behaviour. Artif Intell 212:27–35 es_ES
dc.description.references Levesque HJ, Davis E, Morgenstern L (2012) The winograd schema challenge. In: Proceedings of the thirteenth international conference on the principles of knowledge representation and reasoning, pp 552–561 es_ES
dc.description.references Levin LA (1973) Universal sequential search problems. Prob Inf Transm 9(3):265–266 es_ES
dc.description.references Levin LA (1986) Average case complete problems. SIAM J Comput 15:285–286 es_ES
dc.description.references Levin LA (2013) Universal heuristics: how do humans solve unsolvable problems? In: Dowe DL (ed) Algorithmic probability and friends. Bayesian prediction and artificial intelligence, lecture notes in computer science, vol 7070. Springer, New York, pp 53–54 es_ES
dc.description.references Li M, Vitányi P (2008) An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer, New York es_ES
dc.description.references Livingstone D (2006) Turing’s test and believable AI in games. Comput Entertain CIE 4(1):6 es_ES
dc.description.references Llargues-Asensio JM, Peralta J, Arrabales R, González-Bedía M, Cortez P, López-Peña AL (2014) Artificial intelligence approaches for the generation and assessment of believable human-like behaviour in virtual characters. Expert Systems with Applications es_ES
dc.description.references Long D, Fox M (2003) The 3rd international planning competition: results and analysis. J Artif Intell Res JAIR 20:1–59 es_ES
dc.description.references Lord FM (1980) Applications of item response theory to practical testing problems. Erlbaum, Mahwah es_ES
dc.description.references Macià N, Bernadó-Mansilla E (2014) Towards UCI+: a mindful repository design. Inf Sci 261:237–262 es_ES
dc.description.references Madhavan R, Tunstel E, Messina E (2009) Performance evaluation and benchmarking of intelligent systems. Springer, New York es_ES
dc.description.references Mahoney MV (1999) Text compression as a test for artificial intelligence. In: Proceedings of the national conference on artificial intelligence, AAAI, p 970 es_ES
dc.description.references Marché C, Zantema H (2007) The termination competition. In: Term rewriting and applications, Springer, pp 303–313 es_ES
dc.description.references Marcus G, Rossi F, Veloso M (2016) Beyond the Turing test (special issue). AI Mag 37(1):3–101 es_ES
dc.description.references Masum H, Christensen S (2003) The turing ratio: a framework for open-ended task metrics. J Evol Technol es_ES
dc.description.references Masum H, Christensen S, Oppacher F (2002) The turing ratio: metrics for open-ended tasks. In: GECCO, Citeseer, pp 973–980 es_ES
dc.description.references McCarthy J (2007) What is artificial intelligence. Technical report, Stanford University. http://www-formal.stanford.edu/jmc/whatisai.html es_ES
dc.description.references McCorduck P (2004) Machines who think. A K Peters/CRC Press, Boca Raton es_ES
dc.description.references McDermott J, White DR, Luke S, Manzoni L, Castelli M, Vanneschi L, Jaśkowski W, Krawiec K, Harper R, Jong KD, O’Reilly UM (2012) Genetic programming needs better benchmarks. In: Proceedings of the 14th international conference on Genetic and evolutionary computation conference. ACM, Philadelphia, pp 791–798 es_ES
dc.description.references McGuigan M (2006) Graphics Turing Test. arXiv preprint arXiv:cs/0603132 es_ES
dc.description.references Melkikh AV (2014) The no free lunch theorem and hypothesis of instinctive animal behavior. Artif Intell Res 3(4):p43 es_ES
dc.description.references Mellenbergh GJ (1994) Generalized linear item response theory. Psychol Bull 115(2):300 es_ES
dc.description.references Mesnil G, Dauphin Y, Glorot X, Rifai S, Bengio Y, Goodfellow IJ, Lavoie E, Muller X, Desjardins G, Warde-Farley D, et al (2012) Unsupervised and transfer learning challenge: a deep learning approach. JMLR: Workshop and Conference Proceedings, 2012 ICML Workshop on Unsupervised and Transfer Learning vol 27, pp 97–110 es_ES
dc.description.references Messina E, Meystel A, Reeker L (2001) PerMIS 2001, white paper. In: Meystel AM, Messina ER (eds) Measuring the performance and intelligence of systems: proceedings of the 2001 PerMIS Workshop, September 4, 2001, National Institute of Standards and Technology (NIST) Special Publication 982. Gaithersburg, pp 3–15 es_ES
dc.description.references Meystel A (2000) Permis 2000 white paper: measuring performance and intelligence of systems with autonomy. In: Meystel AM, Messina ER (eds) Measuring the performance and intelligence of systems: proceedings of the 2000 PerMIS Workshop, August 14–16, 2000, National Institute of Standards and Technology (NIST) Special Publication 970. Gaithersburg, pp 1–34 es_ES
dc.description.references Meystel A, Albus J, Messina E, Leedom D (2003a) Performance measures for intelligent systems: measures of technology readiness. Technical report, DTIC Document es_ES
dc.description.references Meystel A, Albus J, Messina E, Leedom D (2003) Permis 2003 white paper: performance measures for intelligent systems—measures of technology readiness. In: Meystel AM, Messina ER (eds) Measuring the performance and intelligence of systems: proceedings of the 2003 PerMIS Workshop, National Institute of Standards and Technology (NIST) Special Publication 1014. Gaithersburg es_ES
dc.description.references Minsky ML (ed) (1968) Semantic information processing. MIT Press, Cambridge es_ES
dc.description.references Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533 es_ES
dc.description.references Morgenstern L, Davis E, Ortiz-Jr CL (2016) Planning, executing, and evaluating the Winograd schema challenge. AI Mag 37(1):50–54 es_ES
dc.description.references Mueller S, Jones M, Minnery B, Hiland JM (2007) The bica cognitive decathlon: a test suite for biologically-inspired cognitive agents. In: Proceedings of behavior representation in modeling and simulation conference, Norfolk es_ES
dc.description.references Mueller ST (2010) A partial implementation of the BICA cognitive decathlon using the psychology experiment building language (PEBL). Int J Mach Conscious 2(02):273–288 es_ES
dc.description.references Mueller ST, Minnery BS (2008) Adapting the Turing Test for embodied neurocognitive evaluation of biologically-inspired cognitive agents. In: Proceedings of 2008 AAAI fall symposium on biologically inspired cognitive architectures es_ES
dc.description.references Newell A (1973) You can’t play 20 questions with nature and win: projective comments on the papers of this symposium. In: Chase W (ed) Vis Inf Process. Academic Press, New York, pp 283–308 es_ES
dc.description.references Newell A (1980) Physical symbol systems. Cogn Sci 4(2):135–183 es_ES
dc.description.references Newell A (1990) Unified theories of cognition. Harvard University, Cambridge es_ES
dc.description.references Newell A, Simon HA (1976) Computer science as empirical inquiry: symbols and search. Commun ACM 19(3):113–126 es_ES
dc.description.references Nizamani AR (2015) Reasoning with bounded cognitive resources. Ph.D. thesis, Department of Applied Information Technology, Chalmers University of Technology & University of Gothenburg, Sweden es_ES
dc.description.references Oppy G, Dowe DL (2011) The Turing Test. In: Zalta EN (ed) Stanford Encyclopedia of Philosophy, Stanford University. http://plato.stanford.edu/entries/turing-test/ es_ES
dc.description.references Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359 es_ES
dc.description.references Perez D, Samothrakis S, Togelius J, Schaul T, Lucas S, Couëtoux A, Lee J, Lim CU, Thompson T (2015) The 2014 general video game playing competition. IEEE Transactions on Computational Intelligence and AI in Games es_ES
dc.description.references Potthast M, Hagen M, Gollub T, Tippmann M, Kiesel J, Rosso P, Stamatatos E, Stein B (2013) Overview of the 5th international competition on plagiarism detection. CLEF (2013) Evaluation labs and workshop working notes papers, pp 23–26 September. Valencia, Spain es_ES
dc.description.references Proudfoot D (2011) Anthropomorphism and AI: Turing’s much misunderstood imitation game. Artif Intell 175(5):950–957 es_ES
dc.description.references Quinn AJ, Bederson BB (2011) Human computation: a survey and taxonomy of a growing field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, pp 1403–1412 es_ES
dc.description.references Rajani S (2011) Artificial intelligence—man or machine. Int J Inf Technol 4(1):173–176 es_ES
dc.description.references Rao RB, Fung G, Rosales R (2008) On the dangers of cross-validation. an experimental evaluation. In: SDM, SIAM, pp 588–596 es_ES
dc.description.references Rohrer B (2010) Accelerating progress in artificial general intelligence: choosing a benchmark for natural world interaction. J Artif Gen Intell 2(1):1–28 es_ES
dc.description.references Rothenberg J, Paul J, Kameny I, Kipps JR, Swenson M (1987) Evaluating expert system tools: a framework and methodology-workshops. Technical report, DTIC Document es_ES
dc.description.references Russell S, Norvig P (2009) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle River es_ES
dc.description.references Sanghi P, Dowe DL (2003) A computer program capable of passing IQ tests. In: 4th international conference on cognitive science (ICCS’03), Sydney, pp 570–575 es_ES
dc.description.references Schaeffer J, Burch N, Bjornsson Y, Kishimoto A, Muller M, Lake R, Lu P, Sutphen S (2007) Checkers is solved. Science 317(5844):1518 es_ES
dc.description.references Schaie KW (2010) Primary mental abilities. Corsini Encyclopedia of Psychology es_ES
dc.description.references Schaul T (2014) An extensible description language for video games. IEEE Trans Comput Intell AI Games PP(99):1–1. doi: 10.1109/TCIAIG.2014.2352795 es_ES
dc.description.references Schenck C (2013) Intelligence tests for robots: Solving perceptual reasoning tasks with a humanoid robot. Master’s thesis, Iowa State University es_ES
dc.description.references Schlenoff C, Scott H, Balakirsky S (2011) Performance evaluation of intelligent systems at the National Institute of Standards and Technology (NIST). Technical report, DTIC Document es_ES
dc.description.references Schmid U, Ragni M (2015) Comparing computer models solving number series problems. In: Artificial general intelligence. Springer, pp 352–361 es_ES
dc.description.references Schweizer P (1998) The truly total Turing test. Minds Mach 8(2):263–272 es_ES
dc.description.references Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3:417–457 es_ES
dc.description.references Seber GAF, Salehi MM (2013) Adaptive cluster sampling. In: Adaptive sampling designs. Springer, pp 11–26 es_ES
dc.description.references Settles B (2012) Active learning. Synth Lect Artif Intell Mach Learn 6(1):1–114 es_ES
dc.description.references Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, Oxford es_ES
dc.description.references Shettleworth SJ, Bloom P, Nadel L (2013) Fundamentals of comparative cognition. Oxford University Press, Oxford es_ES
dc.description.references Shieber SM (2016) Principles for designing an AI competition, or why the Turing test fails as an inducement prize. AI Mag 37(1):91–96 es_ES
dc.description.references Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489 es_ES
dc.description.references Simmons R (2000) Survivability and competence as measures of intelligent systems. In: Meystel AM, Messina ER (eds) Measuring the performance and intelligence of systems: proceedings of the 2000 PerMIS Workshop, August 14–16, 2000, National Institute of Standards and Technology (NIST) Special Publication 970. Gaithersburg, pp 162–163 es_ES
dc.description.references Simon HA (1995) Artificial intelligence: an empirical science. Artif Intell 77(1):95–127 es_ES
dc.description.references Sloman A, Scheutz M (2002) A framework for comparing agent architectures. Proceedings of UKCI 2 es_ES
dc.description.references Smith WD (2002) Rating systems for gameplayers, and learning. NEC, Princeton, NJ, Technical report, pp 93–104 es_ES
dc.description.references Smith WD (2006) Mathematical definition of “intelligence” (and consequences). Unpublished report es_ES
dc.description.references Soares C (2009) UCI++: improved support for algorithm selection using datasetoids. In: Advances in knowledge discovery and data mining. Springer, pp 499–506 es_ES
dc.description.references Solomonoff R (1996) Does algorithmic probability solve the problem of induction. Inf Stat Induction Sci 7–8 es_ES
dc.description.references Solomonoff RJ (1964) A formal theory of inductive inference. Part I. Inf Control 7(1):1–22 es_ES
dc.description.references Solomonoff RJ (1984) Optimum sequential search. Oxbridge Research, Cambridge. http://world.std.com/~rjs/optseq.pdf es_ES
dc.description.references Srinivasan R (2002) Importance sampling: applications in communications and detection. Springer, New York es_ES
dc.description.references Starkie B, van Zaanen M, Estival D (2006) The Tenjinno machine translation competition. In: Grammatical inference: algorithms and applications. Springer, pp 214–226 es_ES
dc.description.references Sternberg RJ (ed) (2000) Handbook of intelligence. Cambridge University Press, Cambridge es_ES
dc.description.references Strannegård C, Amirghasemi M, Ulfsbücker S (2013a) An anthropomorphic method for number sequence problems. Cogn Syst Res 22–23:27–34 es_ES
dc.description.references Strannegård C, Nizamani A, Sjöberg A, Engström F (2013b) Bounded Kolmogorov complexity based on cognitive models. In: Kühnberger KU, Rudolph S, Wang P (eds) Artificial general intelligence. Lecture notes in computer science, vol 7999. Springer, Berlin Heidelberg, pp 130–139 es_ES
dc.description.references Strickler RE (1973) Change in selected characteristics of students between ninth and twelfth grade as related to high school curriculum es_ES
dc.description.references Sturtevant N (2012) Benchmarks for grid-based pathfinding. Trans Comput Intell AI Games 4(2):144–148. http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf es_ES
dc.description.references Sutcliffe G (2009) The TPTP problem library and associated infrastructure: the FOF and CNF Parts, v3.5.0. J Autom Reason 43(4):337–362 es_ES
dc.description.references Sutcliffe G, Suttner C (2006) The state of CASC. AI Commun 19(1):35–48 es_ES
dc.description.references Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in neural information processing systems, pp 640–646 es_ES
dc.description.references Thrun S, Pratt L (2012) Learning to learn. Springer, New York es_ES
dc.description.references Thurstone LL (1938a) Primary mental abilities. Psychometric monographs es_ES
dc.description.references Thurstone LL (1938b) Primary mental abilities. Psychometric monographs es_ES
dc.description.references Togelius J, Yannakakis GN, Karakovskiy S, Shaker N (2012) Assessing believability. In: Believable bots, Springer, pp 215–230 es_ES
dc.description.references Torrey L, Shavlik J (2009) Transfer learning. Handb Res Mach Learn Appl 3:17–35 es_ES
dc.description.references Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460 es_ES
dc.description.references Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142 es_ES
dc.description.references Vallati M, Chrpa L, Grzes M, McCluskey TL, Roberts M, Sanner S (2015) The 2014 international planning competition: progress and trends. AI Mag 36(3):90–98 es_ES
dc.description.references van Rijn JN, Bischl B, Torgo L, Gao B, Umaashankar V, Fischer S, Winter P, Wiswedel B, Berthold MR, Vanschoren J (2013) Openml: a collaborative science platform. In: Machine learning and knowledge discovery in databases. Springer, pp 645–649 es_ES
dc.description.references Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment databases. Mach Learn 87(2):127–158 es_ES
dc.description.references Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014) Openml: networked science in machine learning. ACM SIGKDD Explor Newsl 15(2):49–60 es_ES
dc.description.references Vázquez D, López AM, Marín J, Ponsa D, Gerónimo D (2014) Virtual and real world adaptation for pedestrian detection. IEEE Trans Pattern Anal Mach Intell 36(4):797–809. doi: 10.1109/TPAMI.2013.163 es_ES
dc.description.references Vere SA (1992) A cognitive process shell. Behav Brain Sci 15(03):460–461 es_ES
dc.description.references von Ahn L (2009) Human computation. In: Design automation conference, 2009. DAC’09. 46th ACM/IEEE, IEEE, pp 418–419 es_ES
dc.description.references von Ahn L, Blum M, Langford J (2004) Telling humans and computers apart automatically. Commun ACM 47(2):56–60 es_ES
dc.description.references von Ahn L, Maurer B, McMillen C, Abraham D, Blum M (2008) RECAPTCHA: human-based character recognition via web security measures. Science 321(5895):1465 es_ES
dc.description.references Wallace CS, Boulton DM (1968) An information measure for classification. Comput J 11(2):185–194 es_ES
dc.description.references Wallace CS, Dowe DL (1999) Minimum message length and Kolmogorov complexity. Comput J 42(4):270–283 (special issue on Kolmogorov complexity) es_ES
dc.description.references Wang G, Mohanlal M, Wilson C, Wang X, Metzger M, Zheng H, Zhao BY (2012) Social Turing tests: crowdsourcing sybil detection. arXiv preprint arXiv:1205.3856 es_ES
dc.description.references Wang P (2010) The evaluation of agi systems. In: Proceedings of the third conference on artificial general intelligence, Citeseer, pp 164–169 es_ES
dc.description.references Warwick K (2014) Turing Test success marks milestone in computing history. University or Reading Press Release, es_ES
dc.description.references Wasserman EA, Zentall TR (2006) Comparative cognition: Experimental explorations of animal intelligence. Oxford University Press, Oxford es_ES
dc.description.references Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3):279–292 es_ES
dc.description.references Weiss DJ (2011) Better data from better measurements using computerized adaptive testing. J Methods Meas Soc Sci 2(1):1–27 es_ES
dc.description.references Weizenbaum J (1966) ELIZA—a computer program for the study of natural language communication between man and machine. Commun ACM 9(1):36–45 es_ES
dc.description.references Wellman M, Reeves D, Lochner K, Vorobeychik Y (2004) Price prediction in a trading agent competition. J Artif Intell Res JAIR 21:19–36 es_ES
dc.description.references White DR, McDermott J, Castelli M, Manzoni L, Goldman BW, Kronberger G, Jaśkowski W, O’Reilly UM, Luke S (2013) Better GP benchmarks: community survey results and proposals. Genet Program Evolvable Mach 14:3–29. doi: 10.1007/s10710-012-9177-2 es_ES
dc.description.references Whiteson S, Tanner B, White A (2010) The reinforcement learning competitions. AI Mag 31(2):81–94 es_ES
dc.description.references Whiteson S, Tanner B, Taylor ME, Stone P (2011) Protecting against evaluation overfitting in empirical reinforcement learning. In: 2011 IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL), IEEE, pp 120–127 es_ES
dc.description.references Williams PL, Beer RD (2010) Information dynamics of evolved agents. In: From animals to animats 11, Springer, pp 38–49 es_ES
dc.description.references Winikoff M, Cranefield S (2014) On the testability of bdi agent systems. J Artif Intell Res JAIR 51:71–131 es_ES
dc.description.references Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8(7):1341–1390 es_ES
dc.description.references Wolpert DH (2012) What the no free lunch theorems really mean; how to improve search algorithms. Technical report, Santa fe Institute Working Paper es_ES
dc.description.references Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical report SFI-TR-95-02-010 (Santa Fe Institute) es_ES
dc.description.references Wolpert DH, Macready WG (2005) Coevolutionary free lunches. IEEE Trans Evol Comput 9(6):721–735 es_ES
dc.description.references Yampolskiy RV (2015) Artificial superintelligence: a futuristic approach. CRC Press, Boca Raton es_ES
dc.description.references Yonck R (2012) Toward a standard metric of machine intelligence. World Future Rev 4(2):61–70 es_ES
dc.description.references You J (2015) Beyond the turing test. Science 347(6218):116–116 es_ES
dc.description.references Zatuchna Z, Bagnall A (2009) Learning mazes with aliasing states: an LCS algorithm with associative perception. Adapt Behav 17(1):28–57 es_ES
dc.description.references Zhou ZH (2012) Ensemble methods: foundations and algorithms. CRC Press, Boca Raton es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem