- -

An effcient algorithm based on splitting for the time integration of the Schrödinger equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An effcient algorithm based on splitting for the time integration of the Schrödinger equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Murua, Ander es_ES
dc.date.accessioned 2017-06-26T14:16:31Z
dc.date.available 2017-06-26T14:16:31Z
dc.date.issued 2015-12-15
dc.identifier.issn 0021-9991
dc.identifier.uri http://hdl.handle.net/10251/83666
dc.description.abstract We present a practical algorithm based on symplectic splitting methods intended for the numerical integration in time of the Schrödinger equation when the Hamiltonian operator is either time-independent or changes slowly with time. In the later case, the evolution operator can be effectively approximated in a step-by-step manner: first divide the time integration interval in sufficiently short subintervals, and then successively solve a Schrödinger equation with a different time-independent Hamiltonian operator in each of these subintervals. When discretized in space, the Schrödinger equation with the time-independent Hamiltonian operator obtained for each time subinterval can be recast as a classical linear autonomous Hamiltonian system corresponding to a system of coupled harmonic oscillators. The particular structure of this linear system allows us to construct a set of highly efficient schemes optimized for different precision requirements and time intervals. Sharp local error bounds are obtained for the solution of the linear autonomous Hamiltonian system considered in each time subinterval. Our schemes can be considered, in this setting, as polynomial approximations to the matrix exponential in a similar way as methods based on Chebyshev and Taylor polynomials. The theoretical analysis, supported by numerical experiments performed for different time-independent Hamiltonians, indicates that the new methods are more efficient than schemes based on Chebyshev polynomials for all tolerances and time interval lengths. The algorithm we present automatically selects, for each time subinterval, the most efficient splitting scheme (among several new optimized splitting methods) for a prescribed error tolerance and given estimates of the upper and lower bounds of the eigenvalues of the discretized version of the Hamiltonian operator. es_ES
dc.description.sponsorship The authors acknowledge Ministerio de Economia y Competitividad (Spain) for financial support through the coordinated project MTM2013-46553-C3. AM is additionally partially supported by the Basque Government (Consolidated Research Group IT649-13), and FC by NPRP GRANT #5-674-1-114 from the Qatar National Research Fund. We are grateful to the anonymous referees, whose comments have helped us to improve this paper. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational Physics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Symplectic splitting methods es_ES
dc.subject Time-dependent Schrödinger equation es_ES
dc.subject Error analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An effcient algorithm based on splitting for the time integration of the Schrödinger equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcp.2015.09.047
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-2-P/ES/ASPECTOS ALGEBRAICOS Y COMPUTACIONALES EN INTEGRACION GEOMETRICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-3-P/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA. TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT649-13/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/QNRF//NPRP 5-674-1-114/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas, F.; Murua, A. (2015). An effcient algorithm based on splitting for the time integration of the Schrödinger equation. Journal of Computational Physics. 303:396-412. https://doi.org/10.1016/j.jcp.2015.09.047 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jcp.2015.09.047 es_ES
dc.description.upvformatpinicio 396 es_ES
dc.description.upvformatpfin 412 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 303 es_ES
dc.relation.senia 303754 es_ES
dc.identifier.eissn 1090-2716
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Qatar National Research Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem