- -

On fuzzy phi-contractive sequences and fixed point theorems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On fuzzy phi-contractive sequences and fixed point theorems

Show full item record

Gregori Gregori, V.; Miñana, JJ. (2016). On fuzzy phi-contractive sequences and fixed point theorems. Fuzzy Sets and Systems. 300:93-101. https://doi.org/10.1016/j.fss.2015.12.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83982

Files in this item

Item Metadata

Title: On fuzzy phi-contractive sequences and fixed point theorems
Author: Gregori Gregori, Valentín Miñana, Juan José
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Issued date:
Abstract:
In this paper we give a fixed point theorem in the context of fuzzy metric spaces in the sense of George and Veeramani. As a consequence of our result we obtain a fixed point theorem due to D. Mihet and generalize a fixed ...[+]
Subjects: Fuzzy metric space , Fuzzy contractive mapping , Fixed point
Copyrigths: Reserva de todos los derechos
Source:
Fuzzy Sets and Systems. (issn: 0165-0114 ) (eissn: 1872-6801 )
DOI: 10.1016/j.fss.2015.12.010
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.fss.2015.12.010
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2012%2F040/
Thanks:
Juan Jose Minana acknowledges the support of Conselleria de Educacion, Formacion y Empleo of Generalitat Valenciana, Spain, by Programa Vali+d para investigadores en formacion under Grant ACIF/2012/040.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record