Mostrar el registro sencillo del ítem
dc.contributor.advisor | Romaguera Bonilla, Salvador | es_ES |
dc.contributor.author | Castro Company, Francisco | es_ES |
dc.date.accessioned | 2010-07-05T07:16:47Z | |
dc.date.available | 2010-07-05T07:16:47Z | |
dc.date.created | 2010-06-15T08:00:00Z | es_ES |
dc.date.issued | 2010-07-05T07:16:43Z | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/8420 | |
dc.description.abstract | Desde que L.A. Zadeh presentó la teoría de conjuntos difusos en 1965, esta se ha usado en una amplia serie de áreas de las matemáticas y se ha aplicado en una gran variedad de escenarios de la vida real. Estos escenarios cubren procesos complejos sin modelo matemático sencillo tales como dispositivos de control industrial, reconocimiento de patrones o sistemas que gestionen información imprecisa o altamente impredecible. La topología difusa es un importante ejemplo de uso de la teoría de L.A. Zadeh. Durante años, los autores de este campo han buscado obtener la definición de un espacio métrico difuso para medir la distancia entre elementos según grados de proximidad. El presente trabajo trata acerca de la bicompletación de espacios casi-métricos difusos en el sentido de Kramosil y Michalek. Sherwood probó que todo espacio métrico difuso admite completación que es única excepto por isometría basándose en propiedades de la métrica de Lévy. Probamos aquí que todo espacio casi-métrico difuso tiene bicompletación usando directamente el supremo de conjuntos en [0,1] y límites inferiores de secuencias en [0,1] en lugar de usar la métrica de Lévy. Aprovechamos tanto la bicompletitud y bicompletación de espacios casi-métricos difusos como las propiedades de los espacios métricos difusos y difusos intuicionistas para presentar varias aplicaciones a problemas del campo de la informática. Así estudiamos la existencia y unicidad de solución para las ecuaciones de recurrencia asociadas a ciertos algoritmos formados por dos procedimientos recursivos. Para analizar su complejidad aplicamos el principio de contracción de Banach tanto en un producto de casi-métricas no-Arquimedianas en el dominio de las palabras como en la casi-métrica producto de dos espacios de complejidad casi-métricos de Schellekens. Estudiamos también una aplicación de espacios métricos difusos a sistemas de información basados en localidad de accesos. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.source | Riunet | |
dc.subject | Espacios métricos intuicionistas | es_ES |
dc.subject | Espacios casi-métricos fuzzy | es_ES |
dc.subject | Bicompletación | es_ES |
dc.subject | Complejidad algorítmica | es_ES |
dc.subject | Sistemas de información | es_ES |
dc.subject | Contracción | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Fuzzy Quasi-Metric Spaces: Bicompletion, Contractions on Product Spaces, and Applications to Access Predictions | |
dc.type | Tesis doctoral | es_ES |
dc.subject.unesco | 120302 - Lenguajes algorítmicos | es_ES |
dc.subject.unesco | 120318 - Sistemas de información, diseño y componentes | es_ES |
dc.subject.unesco | 121005 - Topología general | es_ES |
dc.identifier.doi | 10.4995/Thesis/10251/8420 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Castro Company, F. (2010). Fuzzy Quasi-Metric Spaces: Bicompletion, Contractions on Product Spaces, and Applications to Access Predictions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8420 | es_ES |
dc.description.accrualMethod | Palancia | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.tesis | 3301 | es_ES |