- -

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ginzburg, Pavel es_ES
dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Wurtz, G.A. es_ES
dc.contributor.author Dickson, W. es_ES
dc.contributor.author Murphy, Antony es_ES
dc.contributor.author Morgan, F. es_ES
dc.contributor.author Pollard, Robert es_ES
dc.contributor.author Iorsh, Ivan es_ES
dc.contributor.author Atrashchenko, Alexander es_ES
dc.contributor.author Belov, Pavel es_ES
dc.contributor.author Kivshar, Y.S. es_ES
dc.contributor.author Nevet, A. es_ES
dc.contributor.author Ankonina, G. es_ES
dc.contributor.author Orenstein, M. es_ES
dc.contributor.author Zayats, A.V. es_ES
dc.date.accessioned 2017-07-03T10:38:18Z
dc.date.available 2017-07-03T10:38:18Z
dc.date.issued 2013-06-13
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/84335
dc.description.abstract [EN] One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent crystals and, thus, have a bulky design. Here, we have demonstrated the polarization manipulation of light by employing a thin subwavelength slab of metamaterial with an extremely anisotropic effective permittivity tensor. Polarization properties of light incident on the metamaterial in the regime of hyperbolic, epsilon-near-zero, and conventional elliptic dispersions were compared. We have shown that both reflection from and transmission through./20 thick slab of the metamaterial may provide nearly complete linear-to-circular polarization conversion or 90 linear polarization rotation, not achievable with natural materials. Using ellipsometric measurements, we experimentally studied the polarization conversion properties of the metamaterial slab made of the plasmonic nanorod arrays in different dispersion regimes. We have also suggested all-optical ultrafast control of reflected or transmitted light polarization by employing metal nonlinearities. (C) 2013 Optical Society of America es_ES
dc.description.sponsorship This work has been supported in part by EPSRC (UK) and ERC. P. G. acknowledges support from the Royal Society via the Newton International Fellowship. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Polarization es_ES
dc.subject Enz es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.21.014907
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/321268/EU/Frontiers in nanophotonics: integrated plasmonic metamaterials devices/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ginzburg, P.; Rodríguez Fortuño, FJ.; Wurtz, G.; Dickson, W.; Murphy, A.; Morgan, F.; Pollard, R.... (2013). Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Optics Express. 21(12):14907-14917. doi:10.1364/OE.21.014907 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1364/OE.21.014907 es_ES
dc.description.upvformatpinicio 14907 es_ES
dc.description.upvformatpfin 14917 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 246050 es_ES
dc.identifier.pmid 23787679
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido
dc.contributor.funder European Research Council
dc.description.references Papakostas, A., Potts, A., Bagnall, D. M., Prosvirnin, S. L., Coles, H. J., & Zheludev, N. I. (2003). Optical Manifestations of Planar Chirality. Physical Review Letters, 90(10). doi:10.1103/physrevlett.90.107404 es_ES
dc.description.references Hentschel, M., Schäferling, M., Weiss, T., Liu, N., & Giessen, H. (2012). Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 12(5), 2542-2547. doi:10.1021/nl300769x es_ES
dc.description.references Helgert, C., Pshenay-Severin, E., Falkner, M., Menzel, C., Rockstuhl, C., Kley, E.-B., … Pertsch, T. (2011). Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures. Nano Letters, 11(10), 4400-4404. doi:10.1021/nl202565e es_ES
dc.description.references Drezet, A., Genet, C., Laluet, J.-Y., & Ebbesen, T. W. (2008). Optical chirality without optical activity: How surface plasmons give a twist to light. Optics Express, 16(17), 12559. doi:10.1364/oe.16.012559 es_ES
dc.description.references Ellenbogen, T., Seo, K., & Crozier, K. B. (2012). Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry. Nano Letters, 12(2), 1026-1031. doi:10.1021/nl204257g es_ES
dc.description.references Zhao, Y., Belkin, M. A., & Alù, A. (2012). Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications, 3(1). doi:10.1038/ncomms1877 es_ES
dc.description.references Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., … Wegener, M. (2009). Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science, 325(5947), 1513-1515. doi:10.1126/science.1177031 es_ES
dc.description.references Zheludev, N. I., Plum, E., & Fedotov, V. A. (2011). Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength. Applied Physics Letters, 99(17), 171915. doi:10.1063/1.3656286 es_ES
dc.description.references Atatüre, M., Dreiser, J., Badolato, A., & Imamoglu, A. (2007). Observation of Faraday rotation from a single confined spin. Nature Physics, 3(2), 101-106. doi:10.1038/nphys521 es_ES
dc.description.references Crassee, I., Levallois, J., Walter, A. L., Ostler, M., Bostwick, A., Rotenberg, E., … Kuzmenko, A. B. (2010). Giant Faraday rotation in single- and multilayer graphene. Nature Physics, 7(1), 48-51. doi:10.1038/nphys1816 es_ES
dc.description.references Simovski, C. R., Belov, P. A., Atrashchenko, A. V., & Kivshar, Y. S. (2012). Wire Metamaterials: Physics and Applications. Advanced Materials, 24(31), 4229-4248. doi:10.1002/adma.201200931 es_ES
dc.description.references Wurtz, G. A., Pollard, R., Hendren, W., Wiederrecht, G. P., Gosztola, D. J., Podolskiy, V. A., & Zayats, A. V. (2011). Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology, 6(2), 107-111. doi:10.1038/nnano.2010.278 es_ES
dc.description.references Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., … Zayats, A. V. (2009). Plasmonic nanorod metamaterials for biosensing. Nature Materials, 8(11), 867-871. doi:10.1038/nmat2546 es_ES
dc.description.references Podolskiy, V. A., & Narimanov, E. E. (2005). Strongly anisotropic waveguide as a nonmagnetic left-handed system. Physical Review B, 71(20). doi:10.1103/physrevb.71.201101 es_ES
dc.description.references Ginzburg, P., & Orenstein, M. (2008). Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures. Journal of Applied Physics, 103(8), 083105. doi:10.1063/1.2906183 es_ES
dc.description.references Ginzburg, P., & Orenstein, M. (2008). Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification. Journal of Applied Physics, 104(6), 063513. doi:10.1063/1.2978208 es_ES
dc.description.references Cortes, C. L., Newman, W., Molesky, S., & Jacob, Z. (2012). Quantum nanophotonics using hyperbolic metamaterials. Journal of Optics, 14(6), 063001. doi:10.1088/2040-8978/14/6/063001 es_ES
dc.description.references Poddubny, A. N., Belov, P. A., Ginzburg, P., Zayats, A. V., & Kivshar, Y. S. (2012). Microscopic model of Purcell enhancement in hyperbolic metamaterials. Physical Review B, 86(3). doi:10.1103/physrevb.86.035148 es_ES
dc.description.references Ziolkowski, R. W. (2004). Propagation in and scattering from a matched metamaterial having a zero index of refraction. Physical Review E, 70(4). doi:10.1103/physreve.70.046608 es_ES
dc.description.references Silveirinha, M., & Engheta, N. (2006). Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends usingε-Near-Zero Materials. Physical Review Letters, 97(15). doi:10.1103/physrevlett.97.157403 es_ES
dc.description.references Edwards, B., Alù, A., Young, M. E., Silveirinha, M., & Engheta, N. (2008). Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Physical Review Letters, 100(3). doi:10.1103/physrevlett.100.033903 es_ES
dc.description.references Liu, R., Cheng, Q., Hand, T., Mock, J. J., Cui, T. J., Cummer, S. A., & Smith, D. R. (2008). Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.023903 es_ES
dc.description.references Ginzburg, P., Nevet, A., Berkovitch, N., Normatov, A., Lerman, G. M., Yanai, A., … Orenstein, M. (2011). Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas. Nano Letters, 11(1), 220-224. doi:10.1021/nl103585j es_ES
dc.description.references Normatov, A., Ginzburg, P., Berkovitch, N., Lerman, G. M., Yanai, A., Levy, U., & Orenstein, M. (2010). Efficient coupling and field enhancement for the nano-scale: plasmonic needle. Optics Express, 18(13), 14079. doi:10.1364/oe.18.014079 es_ES
dc.description.references Atkinson, R., Hendren, W. R., Wurtz, G. A., Dickson, W., Zayats, A. V., Evans, P., & Pollard, R. J. (2006). Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Physical Review B, 73(23). doi:10.1103/physrevb.73.235402 es_ES
dc.description.references Pollard, R. J., Murphy, A., Hendren, W. R., Evans, P. R., Atkinson, R., Wurtz, G. A., … Podolskiy, V. A. (2009). Optical Nonlocalities and Additional Waves in Epsilon-Near-Zero Metamaterials. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.127405 es_ES
dc.description.references Liu, N., Liu, H., Zhu, S., & Giessen, H. (2009). Stereometamaterials. Nature Photonics, 3(3), 157-162. doi:10.1038/nphoton.2009.4 es_ES
dc.description.references Ginzburg, P., Rodríguez-Fortuño, F. J., Martínez, A., & Zayats, A. V. (2012). Analogue of the Quantum Hanle Effect and Polarization Conversion in Non-Hermitian Plasmonic Metamaterials. Nano Letters, 12(12), 6309-6314. doi:10.1021/nl3034174 es_ES
dc.description.references Ren, M., Plum, E., Xu, J., & Zheludev, N. I. (2012). Giant nonlinear optical activity in a plasmonic metamaterial. Nature Communications, 3(1). doi:10.1038/ncomms1805 es_ES
dc.description.references Alekseyev, L. V., Narimanov, E. E., Tumkur, T., Li, H., Barnakov, Y. A., & Noginov, M. A. (2010). Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control. Applied Physics Letters, 97(13), 131107. doi:10.1063/1.3469925 es_ES
dc.description.references Kullock, R., Hendren, W. R., Hille, A., Grafström, S., Evans, P. R., Pollard, R. J., … Eng, L. M. (2008). Polarization conversion through collective surface plasmons in metallic nanorod arrays. Optics Express, 16(26), 21671. doi:10.1364/oe.16.021671 es_ES
dc.description.references Li, T., Wang, S. M., Cao, J. X., Liu, H., & Zhu, S. N. (2010). Cavity-involved plasmonic metamaterial for optical polarization conversion. Applied Physics Letters, 97(26), 261113. doi:10.1063/1.3533912 es_ES
dc.description.references Li, T., Liu, H., Wang, S.-M., Yin, X.-G., Wang, F.-M., Zhu, S.-N., & Zhang, X. (2008). Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations. Applied Physics Letters, 93(2), 021110. doi:10.1063/1.2958214 es_ES
dc.description.references Hao, J., Yuan, Y., Ran, L., Jiang, T., Kong, J. A., Chan, C. T., & Zhou, L. (2007). Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials. Physical Review Letters, 99(6). doi:10.1103/physrevlett.99.063908 es_ES
dc.description.references Yeh, P. (1980). Optics of anisotropic layered media: A new 4 × 4 matrix algebra. Surface Science, 96(1-3), 41-53. doi:10.1016/0039-6028(80)90293-9 es_ES
dc.description.references Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610v es_ES
dc.description.references Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244 es_ES
dc.description.references Elser, J., Wangberg, R., Podolskiy, V. A., & Narimanov, E. E. (2006). Nanowire metamaterials with extreme optical anisotropy. Applied Physics Letters, 89(26), 261102. doi:10.1063/1.2422893 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem