- -

Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shi, Lei es_ES
dc.contributor.author Harris, Justin T. es_ES
dc.contributor.author Fenollosa Esteve, Roberto es_ES
dc.contributor.author Rodríguez, Marie-Isabelle es_ES
dc.contributor.author Lu, Xiaotang es_ES
dc.contributor.author Korgel, Brian es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2017-07-03T11:33:29Z
dc.date.available 2017-07-03T11:33:29Z
dc.date.issued 2013-05
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/84343
dc.description.abstract [EN] It is generally accepted that the magnetic component of light has a minor role in the light-matter interaction. The recent discovery of metamaterials has broken this traditional understanding, as both the electric and the magnetic field are key ingredients in metamaterials. The top-down technology used so far employs noble metals with large intrinsic losses. Here we report on a bottom-up approach for processing metamaterials based on suspensions of monodisperse full dielectric silicon nanocavities with a large magnetic response in the near-infrared region. Experimental results and theory show that silicon-colloid-based liquid suspensions and photonic crystals made of two-dimensional arrays of particles have strong magnetic response in the near-infrared region with small optical losses. Our findings might have important implications in the bottom-up processing of large-area low-loss metamaterials working in the near-infrared region. es_ES
dc.description.sponsorship We acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, the PROMETEO/2010/043 and the Robert A. Welch Foundation (F-1464). L.S. thanks the financial support from the MINECO (Estancias de profesores e investigadores extranjeros en centros espanoles) fellowship program. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Negative index es_ES
dc.subject Dielectric nanoparticles es_ES
dc.subject Colloidal crystals es_ES
dc.subject Metamaterials es_ES
dc.subject Light es_ES
dc.subject Frequencies es_ES
dc.subject Nanoantennas es_ES
dc.subject Scale es_ES
dc.title Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms2934
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Shi, L.; Harris, JT.; Fenollosa Esteve, R.; Rodríguez, M.; Lu, X.; Korgel, B.; Meseguer Rico, FJ. (2013). Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region. Nature Communications. 4:419041-419047. https://doi.org/10.1038/ncomms2934 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms2934 es_ES
dc.description.upvformatpinicio 419041 es_ES
dc.description.upvformatpfin 419047 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 259078 es_ES
dc.identifier.pmid 23695698
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Landau, L. D. & Lifshitz, E. M. . Electrodynamics of Continuous Media Oxford, UK (1960) . es_ES
dc.description.references Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. . Metamaterials and negative refractive index. Science 305, 788–792 (2004) . es_ES
dc.description.references Soukoulis, C. M., Kafesaki, M. & Economou, E. N. . Negative-index materials: new frontiers in optics. Adv. Mater. 18, 1941–1952 (2006) . es_ES
dc.description.references Soukoulis, C. M. & Wegener, M. . Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–531 (2011) . es_ES
dc.description.references Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. & Soukoulis, C. M. . Magnetic response of metamaterials at 100 Terahertz. Science 306, 1351–1353 (2004) . es_ES
dc.description.references Enkrich, C. et al. Focused-Ion-Beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17, 2547–2549 (2005) . es_ES
dc.description.references Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H. & Giessen, H. . Three dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008) . es_ES
dc.description.references Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005) . es_ES
dc.description.references Liu, N., Fu, L., Kaiser, S., Schweizer, H. & Giessen, H. . Plasmonic building blocks for magnetic molecules in three dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008) . es_ES
dc.description.references Shelby, R. A., Smith, D. R. & Schultz, S. . Experimental verification of a negative index of refraction. Science 292, 77–79 (2001) . es_ES
dc.description.references Zhang, X. & Liu, Z. . Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008) . es_ES
dc.description.references Schurig, D. et al. Metamaterials electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) . es_ES
dc.description.references Zheludev, N. I. . The road ahead of metamaterials. Science 328, 582–583 (2010) . es_ES
dc.description.references Zheludev, N. I. . A roadmap of metamaterials. Opt. Photon. News 22, 30–35 (2011) . es_ES
dc.description.references Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. . Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009) . es_ES
dc.description.references O’Brien, S. & Pendry, J. B. . Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Mater. 14, 4035–4044 (2002) . es_ES
dc.description.references Gansel, J. K. et al. Gold helix photonic metamaterials as broadband circular polarizer. Science 325, 1513–1515 (2009) . es_ES
dc.description.references Radke, A., Gissibl, T., Klotzbucher, T., Braun, P. V. & Giessen, H. . Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 23, 3018–3021 (2011) . es_ES
dc.description.references Chanda, D. et al. Large-are flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotech. 6, 402–407 (2011) . es_ES
dc.description.references Blanco, A. et al. Large scale synthesis of a silicon photonic crystal with a complete three dimensional band gap near 1.5 microns. Nature 405, 437–440 (2000) . es_ES
dc.description.references Xia, Y., Gates, B., Yin, Y. & Lu, Y. . Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000) . es_ES
dc.description.references Garcia-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011) . es_ES
dc.description.references Miroshnichenko, A. E., Lukyanchuk, B. L., Maier, S. A. & Kivshar, Y. S. . Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012) . es_ES
dc.description.references Shi, L., Xifre-Perez, E., Garcia de Abajo, F. J. & Meseguer, F. . Looking through the mirror: optical microcavity-mirror image photonic interaction. Opt. Express 20, 11247–11255 (2012) . es_ES
dc.description.references Shi, L. & Meseguer, F. . Magnetic interaction in all silicon waveguide spherical coupler device. Opt. Express 20, 22617–22626 (2012) . es_ES
dc.description.references Shi, L., Tuzer, T. U., Fenollosa, R. & Meseguer, F. . A new dielectric metamaterial building block with a strong magnetic response below 1.5 micrometers region. Silicon colloids nanocavities. Adv. Mater. 20, 5934–5938 (2012) . es_ES
dc.description.references Evlyukhin, A. B., Reinhardt, C., Seidel, A., Lukyanchuk, B. S. & Chichkov, B. . Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010) . es_ES
dc.description.references Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. . Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 94, 593–598 (2011) . es_ES
dc.description.references Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. . All-dielectric optical nanoantennas. Opt. Express 20, 20599 (2012) . es_ES
dc.description.references Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano. Lett. 12, 3749–3755 (2012) . es_ES
dc.description.references Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Lukyanchuk, B. . Magnetic light. Sci. Rep. 2, 492 (2012) . es_ES
dc.description.references Miroshnichenko, A. E. et al. Magnetic light: optical magnetism of dielectric nanoparticles. Opt. Photon. News 23, 35 (2012) . es_ES
dc.description.references Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Lukyanchuk, B. . Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013) . es_ES
dc.description.references Person, S., Jain, M., Lapin, Z., Saenz, J. J., Wicks, G. & Novotny, L. . Demonstration of zero optical backscattering from single nanoparticles. Nano. Lett. 13, 1806–1809 (2013) . es_ES
dc.description.references Geffrin, J. M. et al. Magnetic and electric coherenece in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012) . es_ES
dc.description.references Pell, L. E., Schricker, A. D., Mikulec, F. V. & Korgel, B. A. . Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20, 6546–6548 (2004) . es_ES
dc.description.references Harris, J. T., Hueso, J. L. & Korgel, B. A. . Hydrogenated amorphous silicon (a-Si:H) colloids. Chem. Mater. 22, 6378–6383 (2010) . es_ES
dc.description.references Alvarez-Puebla, R., Liz-Marzan, L. M. & Garcia de Abajo, F. J. . Light concentration at the nanometer scale. J. Phys. Chem. Lett. 1, 2428–2434 (2010) . es_ES
dc.description.references Meseguer, F. . Colloidal crystals as photonic crystals. Colloids Surfaces A. 270, 1–7 (2005) . es_ES
dc.description.references Zhan, P. et al. The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv. Mater. 18, 1612–1616 (2006) . es_ES
dc.description.references Splinelli, P., Verschuuren, M. A. & Polman, A. . Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012) . es_ES
dc.description.references Palik E. D. (ed.) Handbook of Optical Constants of Solids Academic Press: USA, (1998) . es_ES
dc.description.references Doicu, A., Wriedt, T. & Eremin, Y. A. . Light Scattering by Systems of Particles Springer: Berlin, (2006) . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem