Mostrar el registro sencillo del ítem
dc.contributor.author | Shi, Lei![]() |
es_ES |
dc.contributor.author | Harris, Justin T.![]() |
es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto![]() |
es_ES |
dc.contributor.author | Rodríguez, Marie-Isabelle![]() |
es_ES |
dc.contributor.author | Lu, Xiaotang![]() |
es_ES |
dc.contributor.author | Korgel, Brian![]() |
es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier![]() |
es_ES |
dc.date.accessioned | 2017-07-03T11:33:29Z | |
dc.date.available | 2017-07-03T11:33:29Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10251/84343 | |
dc.description.abstract | [EN] It is generally accepted that the magnetic component of light has a minor role in the light-matter interaction. The recent discovery of metamaterials has broken this traditional understanding, as both the electric and the magnetic field are key ingredients in metamaterials. The top-down technology used so far employs noble metals with large intrinsic losses. Here we report on a bottom-up approach for processing metamaterials based on suspensions of monodisperse full dielectric silicon nanocavities with a large magnetic response in the near-infrared region. Experimental results and theory show that silicon-colloid-based liquid suspensions and photonic crystals made of two-dimensional arrays of particles have strong magnetic response in the near-infrared region with small optical losses. Our findings might have important implications in the bottom-up processing of large-area low-loss metamaterials working in the near-infrared region. | es_ES |
dc.description.sponsorship | We acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, the PROMETEO/2010/043 and the Robert A. Welch Foundation (F-1464). L.S. thanks the financial support from the MINECO (Estancias de profesores e investigadores extranjeros en centros espanoles) fellowship program. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Negative index | es_ES |
dc.subject | Dielectric nanoparticles | es_ES |
dc.subject | Colloidal crystals | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Light | es_ES |
dc.subject | Frequencies | es_ES |
dc.subject | Nanoantennas | es_ES |
dc.subject | Scale | es_ES |
dc.title | Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms2934 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.description.bibliographicCitation | Shi, L.; Harris, JT.; Fenollosa Esteve, R.; Rodríguez, M.; Lu, X.; Korgel, B.; Meseguer Rico, FJ. (2013). Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optial region. Nature Communications. 4:419041-419047. https://doi.org/10.1038/ncomms2934 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/ncomms2934 | es_ES |
dc.description.upvformatpinicio | 419041 | es_ES |
dc.description.upvformatpfin | 419047 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.relation.senia | 259078 | es_ES |
dc.identifier.pmid | 23695698 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Landau, L. D. & Lifshitz, E. M. . Electrodynamics of Continuous Media Oxford, UK (1960) . | es_ES |
dc.description.references | Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. . Metamaterials and negative refractive index. Science 305, 788–792 (2004) . | es_ES |
dc.description.references | Soukoulis, C. M., Kafesaki, M. & Economou, E. N. . Negative-index materials: new frontiers in optics. Adv. Mater. 18, 1941–1952 (2006) . | es_ES |
dc.description.references | Soukoulis, C. M. & Wegener, M. . Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–531 (2011) . | es_ES |
dc.description.references | Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. & Soukoulis, C. M. . Magnetic response of metamaterials at 100 Terahertz. Science 306, 1351–1353 (2004) . | es_ES |
dc.description.references | Enkrich, C. et al. Focused-Ion-Beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17, 2547–2549 (2005) . | es_ES |
dc.description.references | Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H. & Giessen, H. . Three dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008) . | es_ES |
dc.description.references | Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005) . | es_ES |
dc.description.references | Liu, N., Fu, L., Kaiser, S., Schweizer, H. & Giessen, H. . Plasmonic building blocks for magnetic molecules in three dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008) . | es_ES |
dc.description.references | Shelby, R. A., Smith, D. R. & Schultz, S. . Experimental verification of a negative index of refraction. Science 292, 77–79 (2001) . | es_ES |
dc.description.references | Zhang, X. & Liu, Z. . Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008) . | es_ES |
dc.description.references | Schurig, D. et al. Metamaterials electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) . | es_ES |
dc.description.references | Zheludev, N. I. . The road ahead of metamaterials. Science 328, 582–583 (2010) . | es_ES |
dc.description.references | Zheludev, N. I. . A roadmap of metamaterials. Opt. Photon. News 22, 30–35 (2011) . | es_ES |
dc.description.references | Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. . Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009) . | es_ES |
dc.description.references | O’Brien, S. & Pendry, J. B. . Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Mater. 14, 4035–4044 (2002) . | es_ES |
dc.description.references | Gansel, J. K. et al. Gold helix photonic metamaterials as broadband circular polarizer. Science 325, 1513–1515 (2009) . | es_ES |
dc.description.references | Radke, A., Gissibl, T., Klotzbucher, T., Braun, P. V. & Giessen, H. . Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 23, 3018–3021 (2011) . | es_ES |
dc.description.references | Chanda, D. et al. Large-are flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotech. 6, 402–407 (2011) . | es_ES |
dc.description.references | Blanco, A. et al. Large scale synthesis of a silicon photonic crystal with a complete three dimensional band gap near 1.5 microns. Nature 405, 437–440 (2000) . | es_ES |
dc.description.references | Xia, Y., Gates, B., Yin, Y. & Lu, Y. . Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000) . | es_ES |
dc.description.references | Garcia-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011) . | es_ES |
dc.description.references | Miroshnichenko, A. E., Lukyanchuk, B. L., Maier, S. A. & Kivshar, Y. S. . Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012) . | es_ES |
dc.description.references | Shi, L., Xifre-Perez, E., Garcia de Abajo, F. J. & Meseguer, F. . Looking through the mirror: optical microcavity-mirror image photonic interaction. Opt. Express 20, 11247–11255 (2012) . | es_ES |
dc.description.references | Shi, L. & Meseguer, F. . Magnetic interaction in all silicon waveguide spherical coupler device. Opt. Express 20, 22617–22626 (2012) . | es_ES |
dc.description.references | Shi, L., Tuzer, T. U., Fenollosa, R. & Meseguer, F. . A new dielectric metamaterial building block with a strong magnetic response below 1.5 micrometers region. Silicon colloids nanocavities. Adv. Mater. 20, 5934–5938 (2012) . | es_ES |
dc.description.references | Evlyukhin, A. B., Reinhardt, C., Seidel, A., Lukyanchuk, B. S. & Chichkov, B. . Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010) . | es_ES |
dc.description.references | Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. . Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 94, 593–598 (2011) . | es_ES |
dc.description.references | Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. . All-dielectric optical nanoantennas. Opt. Express 20, 20599 (2012) . | es_ES |
dc.description.references | Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano. Lett. 12, 3749–3755 (2012) . | es_ES |
dc.description.references | Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Lukyanchuk, B. . Magnetic light. Sci. Rep. 2, 492 (2012) . | es_ES |
dc.description.references | Miroshnichenko, A. E. et al. Magnetic light: optical magnetism of dielectric nanoparticles. Opt. Photon. News 23, 35 (2012) . | es_ES |
dc.description.references | Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Lukyanchuk, B. . Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013) . | es_ES |
dc.description.references | Person, S., Jain, M., Lapin, Z., Saenz, J. J., Wicks, G. & Novotny, L. . Demonstration of zero optical backscattering from single nanoparticles. Nano. Lett. 13, 1806–1809 (2013) . | es_ES |
dc.description.references | Geffrin, J. M. et al. Magnetic and electric coherenece in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012) . | es_ES |
dc.description.references | Pell, L. E., Schricker, A. D., Mikulec, F. V. & Korgel, B. A. . Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20, 6546–6548 (2004) . | es_ES |
dc.description.references | Harris, J. T., Hueso, J. L. & Korgel, B. A. . Hydrogenated amorphous silicon (a-Si:H) colloids. Chem. Mater. 22, 6378–6383 (2010) . | es_ES |
dc.description.references | Alvarez-Puebla, R., Liz-Marzan, L. M. & Garcia de Abajo, F. J. . Light concentration at the nanometer scale. J. Phys. Chem. Lett. 1, 2428–2434 (2010) . | es_ES |
dc.description.references | Meseguer, F. . Colloidal crystals as photonic crystals. Colloids Surfaces A. 270, 1–7 (2005) . | es_ES |
dc.description.references | Zhan, P. et al. The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv. Mater. 18, 1612–1616 (2006) . | es_ES |
dc.description.references | Splinelli, P., Verschuuren, M. A. & Polman, A. . Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012) . | es_ES |
dc.description.references | Palik E. D. (ed.) Handbook of Optical Constants of Solids Academic Press: USA, (1998) . | es_ES |
dc.description.references | Doicu, A., Wriedt, T. & Eremin, Y. A. . Light Scattering by Systems of Particles Springer: Berlin, (2006) . | es_ES |