Mostrar el registro sencillo del ítem
dc.contributor.author | Mas, María Antonia | es_ES |
dc.contributor.author | Mitsuuchi Tashima, Mauro | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Soriano Martínez, Lourdes | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.date.accessioned | 2017-07-03T14:34:04Z | |
dc.date.available | 2017-07-03T14:34:04Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1013-9826 | |
dc.identifier.uri | http://hdl.handle.net/10251/84366 | |
dc.description.abstract | Nowadays, scientific community is looking for alternatives to reduce the problem of CO2 emissions, making more sustainable binders and reusing wastes from other industries. In this line, the technology of geopolymers was born, in which, binders based on alkali-activation can be produced entirely or almost entirely from waste materials. In alkali-activation a source of aluminosilicate is dissolved by a highly alkaline solution previous to precipitation reactions that form a gel binder. The use of alumino-silicate minerals such as metakaolin, blast furnace slag and fly ash to produce alkali-activated cements has been extensively studied and it s increasing the interest in investigating the suitability of using other materials. Different wastes containing silica and alumina, such as hydrated-carbonated cement, glass, fluid catalytic cracking catalyst residues (FCC) have been activated. The aim of this study is to verify if the use of geopolymers is compatible with the manufacturing technology of typical building elements, in this case roof tiles. Mechanical properties of mortars and roof tiles using as source of aluminosilicates FCC have been studied, with different mixtures and variating the proportions of NaOH and waterglass. Compressive strength development was evaluated in mortars cured at 20ºC for 7 and 28 days and flexural strength, impermeability and impact resistance were evaluated in roof tiles. The results obtained demonstrated the feasibility on the use of geopolymers in the design of new products with less CO2 emissions and then the contribution to the sustainability in the construction sector. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Key Engineering Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alkali activation | es_ES |
dc.subject | Fluid catalytic cracking catalyst (FCC) | es_ES |
dc.subject | Waste | es_ES |
dc.subject | Roof tiles. | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | A binder from alkali activation of FCC waste: use in roof tiles fabrication | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/www.scientific.net/KEM.668.411 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Mas, MA.; Mitsuuchi Tashima, M.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Soriano Martinez, L.; Monzó Balbuena, JM. (2016). A binder from alkali activation of FCC waste: use in roof tiles fabrication. Key Engineering Materials. 668:411-418. doi:10.4028/www.scientific.net/KEM.668.411 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://www.scientific.net/KEM.668.411 | es_ES |
dc.description.upvformatpinicio | 411 | es_ES |
dc.description.upvformatpfin | 418 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 668 | es_ES |
dc.relation.senia | 325370 | es_ES |
dc.identifier.eissn | 1662-9795 | |
dc.description.references | J. W. Phair. (2006). Green chemistry for sustainable cement production and use,. Green Chem. 8, 763–780. | es_ES |
dc.description.references | Mahasenan N, Smith S, Humphreys K. Kaya Y. (2003). | es_ES |
dc.description.references | Shi C, Jiménez AF, Palomo A. (2011) New cements for the 21st century: the pursuit of an alternative to portland cement, Cement Concr Res 41: 750–63. | es_ES |
dc.description.references | Palomo A, Grutzeck MW, Blanco MT. (1999) Alkali-activated fly ashes: a cement for the future,. Cement Concr Res 29: 1323–9. | es_ES |
dc.description.references | Fernandez-Jimenez A, García-Lodeiro I, Palomo A. (2007) Durability of alkali-activated fly ash cementitious materials, J Mater Sci 42: 3055–65. | es_ES |
dc.description.references | Davidovits J. (1991) "Geopolymers - Inorganic Polymeric New Materials, J Therm Anal Calorim 37: 1633–56. | es_ES |
dc.description.references | Davidovits J. (1994) "Geopolymers: Man-Made rock geosynthesis and the resulting development of very early high strength cement J Mater Educ 91–139. | es_ES |
dc.description.references | Xu H, Van Deventer JSJ. (2000) The geopolymerisation of alumino-silicate minerals, Int J Min Process 59: 247–66. | es_ES |
dc.description.references | Lee WKW, van Deventer JSJ. (2002) Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloid Surface Physicochem Eng Aspect 211: 49–66. | es_ES |
dc.description.references | van Deventer J, Provis J, Duxson P, Brice D. (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Bio Val 1: 145–55. | es_ES |
dc.description.references | M. M. Tashima, J. L. Akasaki, V. N. Castaldelli, L. Soriano, J. Monzó, J. Payá and M. V. Borrachero, (2012), New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC), Mater. Lett., 80, 50–52. | es_ES |
dc.description.references | E. D. Rodriguez, S. A. Bernal, J. L. Provis, J. D. Gehman, J. Monzó, J. Payá and M. V. Borrachero (2013), Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process, Fuel, 109, 493–502. | es_ES |
dc.description.references | M. M. Tashima, L. Soriano, J. Monzó, M. V. Borrachero and J. Payá, (2013) Novel geopolymeric material cured at room temperature, Adv. Appl. Ceram., 2013, 112, 179–183. | es_ES |
dc.description.references | M. M. Tashima, J. Payá, J. L. Akasaki, J. Monzó, J. L. P. Melges, L. Soriano and M. V. Borrachero, (2013). | es_ES |
dc.description.references | Payá J, Borrachero M, Monzó J, Soriano L (2009) Studies on the behavior of different spent fluidized-bed catalytic cracking catalysts on Portland cement,. Mater Constr 59: 37–52. | es_ES |
dc.description.references | Méndez R., Borrachero M.V., Payá J. and Monzó J. (2012) Mechanical Strength of Lime-Rice Husk Ash Mortars: A Preliminary Study, Key Engineering Materials, Vol. 517, pp.495-499. | es_ES |
dc.description.references | Melendez M., Espinosa O., Rhyner K., Noboa M. (2004). El techo que cubre el mundo: la teja de microconcreto, Ed. Ecosur. (in spanish). Information on http: /www. ecosur. org/index. php/ publicaciones/category/1-manuales pp.7-27. | es_ES |
dc.description.references | Melendez M., Espinosa O., Rhyner K., Noboa M. (2004). El techo que cubre el mundo: la teja de microconcreto, Ed. Ecosur. (in spanish). Information on http: /www. ecosur. org/index. php/ publicaciones/category/1-manuales pp.88-90. | es_ES |