- -

A binder from alkali activation of FCC waste: use in roof tiles fabrication

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A binder from alkali activation of FCC waste: use in roof tiles fabrication

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mas, María Antonia es_ES
dc.contributor.author Mitsuuchi Tashima, Mauro es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Soriano Martínez, Lourdes es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.date.accessioned 2017-07-03T14:34:04Z
dc.date.available 2017-07-03T14:34:04Z
dc.date.issued 2016
dc.identifier.issn 1013-9826
dc.identifier.uri http://hdl.handle.net/10251/84366
dc.description.abstract Nowadays, scientific community is looking for alternatives to reduce the problem of CO2 emissions, making more sustainable binders and reusing wastes from other industries. In this line, the technology of geopolymers was born, in which, binders based on alkali-activation can be produced entirely or almost entirely from waste materials. In alkali-activation a source of aluminosilicate is dissolved by a highly alkaline solution previous to precipitation reactions that form a gel binder. The use of alumino-silicate minerals such as metakaolin, blast furnace slag and fly ash to produce alkali-activated cements has been extensively studied and it s increasing the interest in investigating the suitability of using other materials. Different wastes containing silica and alumina, such as hydrated-carbonated cement, glass, fluid catalytic cracking catalyst residues (FCC) have been activated. The aim of this study is to verify if the use of geopolymers is compatible with the manufacturing technology of typical building elements, in this case roof tiles. Mechanical properties of mortars and roof tiles using as source of aluminosilicates FCC have been studied, with different mixtures and variating the proportions of NaOH and waterglass. Compressive strength development was evaluated in mortars cured at 20ºC for 7 and 28 days and flexural strength, impermeability and impact resistance were evaluated in roof tiles. The results obtained demonstrated the feasibility on the use of geopolymers in the design of new products with less CO2 emissions and then the contribution to the sustainability in the construction sector. es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Key Engineering Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkali activation es_ES
dc.subject Fluid catalytic cracking catalyst (FCC) es_ES
dc.subject Waste es_ES
dc.subject Roof tiles. es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title A binder from alkali activation of FCC waste: use in roof tiles fabrication es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/www.scientific.net/KEM.668.411
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Mas, MA.; Mitsuuchi Tashima, M.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Soriano Martinez, L.; Monzó Balbuena, JM. (2016). A binder from alkali activation of FCC waste: use in roof tiles fabrication. Key Engineering Materials. 668:411-418. doi:10.4028/www.scientific.net/KEM.668.411 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://www.scientific.net/KEM.668.411 es_ES
dc.description.upvformatpinicio 411 es_ES
dc.description.upvformatpfin 418 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 668 es_ES
dc.relation.senia 325370 es_ES
dc.identifier.eissn 1662-9795
dc.description.references J. W. Phair. (2006). Green chemistry for sustainable cement production and use,. Green Chem. 8, 763–780. es_ES
dc.description.references Mahasenan N, Smith S, Humphreys K. Kaya Y. (2003). es_ES
dc.description.references Shi C, Jiménez AF, Palomo A. (2011) New cements for the 21st century: the pursuit of an alternative to portland cement, Cement Concr Res 41: 750–63. es_ES
dc.description.references Palomo A, Grutzeck MW, Blanco MT. (1999) Alkali-activated fly ashes: a cement for the future,. Cement Concr Res 29: 1323–9. es_ES
dc.description.references Fernandez-Jimenez A, García-Lodeiro I, Palomo A. (2007) Durability of alkali-activated fly ash cementitious materials, J Mater Sci 42: 3055–65. es_ES
dc.description.references Davidovits J. (1991) "Geopolymers - Inorganic Polymeric New Materials, J Therm Anal Calorim 37: 1633–56. es_ES
dc.description.references Davidovits J. (1994) "Geopolymers: Man-Made rock geosynthesis and the resulting development of very early high strength cement J Mater Educ 91–139. es_ES
dc.description.references Xu H, Van Deventer JSJ. (2000) The geopolymerisation of alumino-silicate minerals, Int J Min Process 59: 247–66. es_ES
dc.description.references Lee WKW, van Deventer JSJ. (2002) Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloid Surface Physicochem Eng Aspect 211: 49–66. es_ES
dc.description.references van Deventer J, Provis J, Duxson P, Brice D. (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Bio Val 1: 145–55. es_ES
dc.description.references M. M. Tashima, J. L. Akasaki, V. N. Castaldelli, L. Soriano, J. Monzó, J. Payá and M. V. Borrachero, (2012), New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC), Mater. Lett., 80, 50–52. es_ES
dc.description.references E. D. Rodriguez, S. A. Bernal, J. L. Provis, J. D. Gehman, J. Monzó, J. Payá and M. V. Borrachero (2013), Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process, Fuel, 109, 493–502. es_ES
dc.description.references M. M. Tashima, L. Soriano, J. Monzó, M. V. Borrachero and J. Payá, (2013) Novel geopolymeric material cured at room temperature, Adv. Appl. Ceram., 2013, 112, 179–183. es_ES
dc.description.references M. M. Tashima, J. Payá, J. L. Akasaki, J. Monzó, J. L. P. Melges, L. Soriano and M. V. Borrachero, (2013). es_ES
dc.description.references Payá J, Borrachero M, Monzó J, Soriano L (2009) Studies on the behavior of different spent fluidized-bed catalytic cracking catalysts on Portland cement,. Mater Constr 59: 37–52. es_ES
dc.description.references Méndez R., Borrachero M.V., Payá J. and Monzó J. (2012) Mechanical Strength of Lime-Rice Husk Ash Mortars: A Preliminary Study, Key Engineering Materials, Vol. 517, pp.495-499. es_ES
dc.description.references Melendez M., Espinosa O., Rhyner K., Noboa M. (2004). El techo que cubre el mundo: la teja de microconcreto, Ed. Ecosur. (in spanish). Information on http: /www. ecosur. org/index. php/ publicaciones/category/1-manuales pp.7-27. es_ES
dc.description.references Melendez M., Espinosa O., Rhyner K., Noboa M. (2004). El techo que cubre el mundo: la teja de microconcreto, Ed. Ecosur. (in spanish). Information on http: /www. ecosur. org/index. php/ publicaciones/category/1-manuales pp.88-90. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem