- -

Quantum entropy source on an InP photonic integrated circuit for random number generation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantum entropy source on an InP photonic integrated circuit for random number generation

Mostrar el registro completo del ítem

Abellan, C.; Amaya Ocampo, WA.; Doménech Gómez, JD.; Muñoz Muñoz, P.; Capmany Francoy, J.; Longhi, S.; Mitchell, MW.... (2016). Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 3(9):989-994. https://doi.org/10.1364/OPTICA.3.000989

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84430

Ficheros en el ítem

Metadatos del ítem

Título: Quantum entropy source on an InP photonic integrated circuit for random number generation
Autor: Abellan, Carlos Amaya Ocampo, Waldimar Alexander Doménech Gómez, José David Muñoz Muñoz, Pascual Capmany Francoy, José Longhi, Stefano Mitchell, Morgan W. Pruneri, Valerio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] Random number generators are essential to ensuring performance in information technologies, including cryptography, stochastic simulations, and massive data processing. The quality of random numbers ultimately determines ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Optica. (issn: 2334-2536 )
DOI: 10.1364/OPTICA.3.000989
Editorial:
Optical Society of America
Versión del editor: http://dx.doi.org/10.1364/OPTICA.3.000989
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2013-46168-R/ES/CAPAS ULTRADELGADAS Y SUPERFICIES NANO-ESTRUCTURADAS PARA APLICACIONES EN FOTONICA/
...[+]
info:eu-repo/grantAgreement/MINECO//TEC2013-46168-R/ES/CAPAS ULTRADELGADAS Y SUPERFICIES NANO-ESTRUCTURADAS PARA APLICACIONES EN FOTONICA/
info:eu-repo/grantAgreement/MINECO//SRTC1400C002844XV0/ES/SocialEngagement-Solución Linked BigData para el establecimiento de modelos económicos en la Red/
info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/
info:eu-repo/grantAgreement/EC/FP7/280169/EU/Atomic Quantum Metrology/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/
info:eu-repo/grantAgreement/EC/H2020/713682/EU/Ensured Randomness Integrity in Device-Independent Networks/
info:eu-repo/grantAgreement/MINECO//FIS2014-62181-EXP/ES/EXPLICACIONES PARA EVENTOS CUANTICOS/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 LLAV 00078/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1295/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1623/
[-]
Agradecimientos:
European Regional Development Fund (FEDER) (TEC2013-46168-R); Ministerio de Economia y Competitividad (MINECO) Qu-CARD (SRTC1400C002844XV0); Severo Ochoa (SEV-2015-0522); XPLICA (FIS2014-62181-EXP); European Research Council ...[+]
Tipo: Artículo

References

Shannon, C. E. (1949). Communication Theory of Secrecy Systems*. Bell System Technical Journal, 28(4), 656-715. doi:10.1002/j.1538-7305.1949.tb00928.x

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x

Mascagni, M., Qiu, Y., & Hin, L.-Y. (2014). High performance computing in quantitative finance: A review from the pseudo-random number generator perspective. Monte Carlo Methods and Applications, 20(2). doi:10.1515/mcma-2013-0020 [+]
Shannon, C. E. (1949). Communication Theory of Secrecy Systems*. Bell System Technical Journal, 28(4), 656-715. doi:10.1002/j.1538-7305.1949.tb00928.x

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi:10.1016/s0169-7552(98)00110-x

Mascagni, M., Qiu, Y., & Hin, L.-Y. (2014). High performance computing in quantitative finance: A review from the pseudo-random number generator perspective. Monte Carlo Methods and Applications, 20(2). doi:10.1515/mcma-2013-0020

Click, T. H., Liu, A., & Kaminski, G. A. (2010). Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. Journal of Computational Chemistry, 32(3), 513-524. doi:10.1002/jcc.21638

Rarity, J. G., Owens, P. C. M., & Tapster, P. R. (1994). Quantum Random-number Generation and Key Sharing. Journal of Modern Optics, 41(12), 2435-2444. doi:10.1080/09500349414552281

Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., … Leuchs, G. (2010). A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 4(10), 711-715. doi:10.1038/nphoton.2010.197

Qi, B., Chi, Y.-M., Lo, H.-K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312. doi:10.1364/ol.35.000312

Jofre, M., Curty, M., Steinlechner, F., Anzolin, G., Torres, J. P., Mitchell, M. W., & Pruneri, V. (2011). True random numbers from amplified quantum vacuum. Optics Express, 19(21), 20665. doi:10.1364/oe.19.020665

Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., … Mitchell, M. W. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 22(2), 1645. doi:10.1364/oe.22.001645

Yuan, Z. L., Lucamarini, M., Dynes, J. F., Fröhlich, B., Plews, A., & Shields, A. J. (2014). Robust random number generation using steady-state emission of gain-switched laser diodes. Applied Physics Letters, 104(26), 261112. doi:10.1063/1.4886761

Nie, Y.-Q., Huang, L., Liu, Y., Payne, F., Zhang, J., & Pan, J.-W. (2015). The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Review of Scientific Instruments, 86(6), 063105. doi:10.1063/1.4922417

Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., & Mitchell, M. W. (2015). Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. Physical Review Letters, 115(25). doi:10.1103/physrevlett.115.250403

Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413

Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001

Walmsley, I. A. (2015). Quantum optics: Science and technology in a new light. Science, 348(6234), 525-530. doi:10.1126/science.aab0097

Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., & Walther, P. (2013). Experimental boson sampling. Nature Photonics, 7(7), 540-544. doi:10.1038/nphoton.2013.102

Matthews, J. C. F., Politi, A., Stefanov, A., & O’Brien, J. L. (2009). Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photonics, 3(6), 346-350. doi:10.1038/nphoton.2009.93

Khanmohammadi, A., Enne, R., Hofbauer, M., & Zimmermanna, H. (2015). A Monolithic Silicon Quantum Random Number Generator Based on Measurement of Photon Detection Time. IEEE Photonics Journal, 7(5), 1-13. doi:10.1109/jphot.2015.2479411

Zadok, A., Shalom, H., Tur, M., Cornwell, W. D., & Andonovic, I. (1998). Spectral shift and broadening of DFB lasers under direct modulation. IEEE Photonics Technology Letters, 10(12), 1709-1711. doi:10.1109/68.730477

Adler, R. (1973). A study of locking phenomena in oscillators. Proceedings of the IEEE, 61(10), 1380-1385. doi:10.1109/proc.1973.9292

Aronson, D. G., Doedel, E. J., & Othmer, H. G. (1987). An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators. Physica D: Nonlinear Phenomena, 25(1-3), 20-104. doi:10.1016/0167-2789(87)90095-9

Aronson, D. G., Ermentrout, G. B., & Kopell, N. (1990). Amplitude response of coupled oscillators. Physica D: Nonlinear Phenomena, 41(3), 403-449. doi:10.1016/0167-2789(90)90007-c

Lang, R., & Kobayashi, K. (1980). External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 16(3), 347-355. doi:10.1109/jqe.1980.1070479

Yanchuk, S., Schneider, K. R., & Recke, L. (2004). Dynamics of two mutually coupled semiconductor lasers: Instantaneous coupling limit. Physical Review E, 69(5). doi:10.1103/physreve.69.056221

Erzgräber, H., Lenstra, D., Krauskopf, B., Wille, E., Peil, M., Fischer, I., & Elsäßer, W. (2005). Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios. Optics Communications, 255(4-6), 286-296. doi:10.1016/j.optcom.2005.06.016

Torcini, A., Barland, S., Giacomelli, G., & Marin, F. (2006). Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics. Physical Review A, 74(6). doi:10.1103/physreva.74.063801

Mitchell, M. W., Abellan, C., & Amaya, W. (2015). Strong experimental guarantees in ultrafast quantum random number generation. Physical Review A, 91(1). doi:10.1103/physreva.91.012314

Martin, A., Sanguinetti, B., Lim, C. C. W., Houlmann, R., & Zbinden, H. (2015). Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems. Journal of Lightwave Technology, 33(13), 2855-2859. doi:10.1109/jlt.2015.2416914

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem