- -

Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Aparicio, José L. es_ES
dc.contributor.author Palma, Roberto es_ES
dc.contributor.author Taylor, R.L. es_ES
dc.date.accessioned 2017-07-06T12:01:27Z
dc.date.available 2017-07-06T12:01:27Z
dc.date.issued 2016-09
dc.identifier.issn 1134-3060
dc.identifier.uri http://hdl.handle.net/10251/84597
dc.description.abstract [EN] Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham rep- resentation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is for- mulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoe- lastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and val- idated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and New- mark-b algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomag- netic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear depen- dency on temperature and some second-order interactions. es_ES
dc.description.sponsorship This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Archives of Computational Methods in Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11831-015-9149-9
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00037/ES/Canfranc Underground Physics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-02-11-1828/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-10-2674/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2014%2F232/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Pérez-Aparicio, JL.; Palma, R.; Taylor, R. (2016). Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Archives of Computational Methods in Engineering. 23:535-583. https://doi.org/10.1007/s11831-015-9149-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11831-015-9149-9
dc.description.upvformatpinicio 535 es_ES
dc.description.upvformatpfin 583 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.relation.senia 325918 es_ES
dc.identifier.eissn 1886-1784
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Generalitat Valenciana
dc.description.references Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46 es_ES
dc.description.references Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157 es_ES
dc.description.references Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectrics es_ES
dc.description.references Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15 es_ES
dc.description.references Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926 es_ES
dc.description.references Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447 es_ES
dc.description.references Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150 es_ES
dc.description.references Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527 es_ES
dc.description.references Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073 es_ES
dc.description.references Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401 es_ES
dc.description.references Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824 es_ES
dc.description.references Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469 es_ES
dc.description.references Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816 es_ES
dc.description.references Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061 es_ES
dc.description.references Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253 es_ES
dc.description.references Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812 es_ES
dc.description.references Blun SL (1974) Materials for radiation detection. National Academy of Sciences, Washington es_ES
dc.description.references Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge es_ES
dc.description.references Borovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786 es_ES
dc.description.references Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyAT es_ES
dc.description.references Brauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333 es_ES
dc.description.references Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141 es_ES
dc.description.references Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358 es_ES
dc.description.references Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New York es_ES
dc.description.references Carter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80 es_ES
dc.description.references Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013 es_ES
dc.description.references Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503 es_ES
dc.description.references Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627 es_ES
dc.description.references Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEE es_ES
dc.description.references Clin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001 es_ES
dc.description.references Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46 es_ES
dc.description.references de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194 es_ES
dc.description.references de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, Mineola es_ES
dc.description.references Debye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793 es_ES
dc.description.references del Castillo LF, García-Colín LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951 es_ES
dc.description.references Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106 es_ES
dc.description.references Dorf RC (1997) The electrical engineering handbook. CRC Press, UK es_ES
dc.description.references Earle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, Columbus es_ES
dc.description.references Ebling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461 es_ES
dc.description.references El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226 es_ES
dc.description.references Eringen AC (1980) Mechanics of continua. Robert E Krieger, Malabar es_ES
dc.description.references Eringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New York es_ES
dc.description.references Ersoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705 es_ES
dc.description.references Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882 es_ES
dc.description.references Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86 es_ES
dc.description.references Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289 es_ES
dc.description.references Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888 es_ES
dc.description.references Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273 es_ES
dc.description.references Gavela D, Pérez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectrics es_ES
dc.description.references Goudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97 es_ES
dc.description.references Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle River es_ES
dc.description.references Gros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153 es_ES
dc.description.references Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633 es_ES
dc.description.references Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253 es_ES
dc.description.references Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087 es_ES
dc.description.references He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141 es_ES
dc.description.references Hernández-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex Fís 48:38–45 es_ES
dc.description.references Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403 es_ES
dc.description.references Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880 es_ES
dc.description.references Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454 es_ES
dc.description.references IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi: 10.1109/IEEESTD.1988.79638 es_ES
dc.description.references IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi: 10.1109/IEEESTD.1991.101048 es_ES
dc.description.references Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.html es_ES
dc.description.references Jackson JD (1962) Classical electrodynamics. Wiley, New York es_ES
dc.description.references Jaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOL es_ES
dc.description.references Jaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008 es_ES
dc.description.references Jiménez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, Singapore es_ES
dc.description.references Johnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296 es_ES
dc.description.references Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, Berlin es_ES
dc.description.references Kaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785 es_ES
dc.description.references Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832 es_ES
dc.description.references Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633 es_ES
dc.description.references Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350 es_ES
dc.description.references Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17 es_ES
dc.description.references Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993 es_ES
dc.description.references Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508 es_ES
dc.description.references Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htm es_ES
dc.description.references Lahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, Universität Erlangen-Nürnberg es_ES
dc.description.references Landau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, Oxford es_ES
dc.description.references Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, Oxford es_ES
dc.description.references Landis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628 es_ES
dc.description.references Díaz Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca Raton es_ES
dc.description.references Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin es_ES
dc.description.references Linnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394 es_ES
dc.description.references Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166 es_ES
dc.description.references Llebot JE, Jou D, Casas-Vázquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562 es_ES
dc.description.references Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592 es_ES
dc.description.references Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398 es_ES
dc.description.references Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901 es_ES
dc.description.references Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593 es_ES
dc.description.references McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590 es_ES
dc.description.references McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838 es_ES
dc.description.references MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.com es_ES
dc.description.references Minkowski H (1908) Nachr. ges. wiss. Gottingen 53 es_ES
dc.description.references Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117 es_ES
dc.description.references Nédélec JC (1980) Mixed finite elements in $${R}^3$$ R 3 . Numer Math 35:314–345 es_ES
dc.description.references Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229 es_ES
dc.description.references Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331 es_ES
dc.description.references Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16 es_ES
dc.description.references Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94 es_ES
dc.description.references Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford es_ES
dc.description.references Nour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603 es_ES
dc.description.references Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, Oxford es_ES
dc.description.references Okumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectrics es_ES
dc.description.references Okumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectrics es_ES
dc.description.references Oliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197 es_ES
dc.description.references Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007 es_ES
dc.description.references Palma R, Pérez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563 es_ES
dc.description.references Palma R, Pérez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103 es_ES
dc.description.references Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016 es_ES
dc.description.references Pérez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectrics es_ES
dc.description.references Pérez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374 es_ES
dc.description.references Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502 es_ES
dc.description.references Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908 es_ES
dc.description.references Pérez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45 es_ES
dc.description.references Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290 es_ES
dc.description.references Pérez-Aparicio JL, Palma R, Abouali-Sánchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted) es_ES
dc.description.references Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted) es_ES
dc.description.references Ramírez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644 es_ES
dc.description.references Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, Boston es_ES
dc.description.references Reng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876 es_ES
dc.description.references Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413 es_ES
dc.description.references Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182 es_ES
dc.description.references Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315 es_ES
dc.description.references Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935 es_ES
dc.description.references Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615 es_ES
dc.description.references Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UK es_ES
dc.description.references Rus G, Palma R, Pérez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572 es_ES
dc.description.references Rus G, Palma R, Pérez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293 es_ES
dc.description.references Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca Raton es_ES
dc.description.references Semenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375 es_ES
dc.description.references Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691 es_ES
dc.description.references Several. Wikipedia. Wikipedia: The Free Encyclopedia, Several es_ES
dc.description.references Soh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602 es_ES
dc.description.references Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, Berlin es_ES
dc.description.references Tamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84 es_ES
dc.description.references Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14 es_ES
dc.description.references Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feap es_ES
dc.description.references Thurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434 es_ES
dc.description.references Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063 es_ES
dc.description.references Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San Rafael es_ES
dc.description.references Truesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, Berlin es_ES
dc.description.references Tzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469 es_ES
dc.description.references Walser R (1972) Application of pyromagnetic phenomena to radiation detection. IEEE Trans Magn 8(3):619 es_ES
dc.description.references Woodbridge K, Ertl ME (1978) Pulsed Ettingshausen cooling in bismuth. J Phys F Met Phys 8(9):1941–1945 es_ES
dc.description.references Yan R, Wang B, Yang Q, Liu F, Cao S, Huang W (2004) A numerical model of displacement for giant magnetostrictive actuator. IEEE Trans Magn 14(2):1914–1917 es_ES
dc.description.references Yoo B, Hirano M, Hirata K (2008) Fully coupled electro-magneto-mechanical analysis method of magnetostrictive actuator using 3D finite element method. In: Proceedings of the 2008 international conference on electrical machines es_ES
dc.description.references Youssef HM (2006) Theory of two-temperature-generalized thermoelasticity. IMA J Appl Math 71:383–390 es_ES
dc.description.references Youssef HM (2011) Theory of two-temperature-generalized thermoelasticity without energy dissipation. J Therm Stress 34:138–146 es_ES
dc.description.references Yu N, Imatani S, Inoue T (2006) Hyperbolic thermoelastic analysis due to pulsed heat input by numerical solution. JSME Int J Ser A 49(2):180–187 es_ES
dc.description.references Zeng X, Rajapakse RKND (2004) Effects of remanent field on an elliptical flaw and a crack in a poled piezoelectric ceramic. Comput Mater Sci 30:433–440 es_ES
dc.description.references Zhou L, Tang DW, Araki N (2006) Coupled finite element analysis of generalized thermoelasticity in semi-infinite medium. JSME Int J Ser A 49(2):195–200 es_ES
dc.description.references Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: the basis, 7th edn. Elsevier Butterworth-Heinemann, Amsterdam es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem