- -

Linguistic challenges in automatic summarization technology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Linguistic challenges in automatic summarization technology

Show full item record

Diedrichsen, E. (2017). Linguistic challenges in automatic summarization technology. Journal of Computer-Assisted Linguistic Research. 1(1):40-60. doi:10.4995/jclr.2017.7787.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84657

Files in this item

Item Metadata

Title: Linguistic challenges in automatic summarization technology
Author:
Issued date:
Abstract:
[EN] Automatic summarization is a field of Natural Language Processing that is increasingly used in industry today. The goal of the summarization process is to create a summary of one document or a multiplicity of documents ...[+]
Subjects: Automatic summarization , Natural language processing , Llinguistics , Syntax , Discourse
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Computer-Assisted Linguistic Research. (eissn: 2530-9455 )
DOI: 10.4995/jclr.2017.7787
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/jclr.2017.7787
Type: Artículo

References

Althaus, E., Karamanis, N., & Koller, A. (2004). Computing locally coherent discourses. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL ’04. doi:10.3115/1218955.1219006

Baum, Leonard E. 1972. An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3: 1-8.

Clarke, J., & Lapata, M. (2010). Discourse Constraints for Document Compression. Computational Linguistics, 36(3), 411-441. doi:10.1162/coli_a_00004 [+]
Althaus, E., Karamanis, N., & Koller, A. (2004). Computing locally coherent discourses. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL ’04. doi:10.3115/1218955.1219006

Baum, Leonard E. 1972. An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3: 1-8.

Clarke, J., & Lapata, M. (2010). Discourse Constraints for Document Compression. Computational Linguistics, 36(3), 411-441. doi:10.1162/coli_a_00004

Clarke, J., & Lapata, M. (2010). Discourse Constraints for Document Compression. Computational Linguistics, 36(3), 411-441. doi:10.1162/coli_a_00004

Clarke, J., & Lapata, M. (2010). Discourse Constraints for Document Compression. Computational Linguistics, 36(3), 411-441. doi:10.1162/coli_a_00004

Clarke, James and Mirella Lapata. 2007. Modelling Compression with Discourse Constraints. Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 1-11.

Cohn, Trevor and Mirella Lapata. 2009. Sentence compression as tree transduction. Journal of Artificial Intelligence Research, 34: 637–674.

Conroy, John M., Judith D. Schlesinger and Jade Goldstein Stewart. 2005. CLASSY query-based multi-document summarization. DUC 05 Conference Proceedings.

Conroy, John M., Judith D. Schlesinger, Dianne P. O'Leary and Jade Goldstein. 2006. Back to Basics: CLASSY 2006. Proceedings of the Document Understanding Conference, 2006.

Corston-Oliver, Simon. 2001. Text compaction for display on very small screens. Proceedings of the NAACL Workshop on Automatic Summarization, 89–98.

Diedrichsen, Elke (2016): Does NLP need Theoretical Linguistics? In Peri-an-Pascual, Carlos and Eva M. Mestre-Mestre (eds.): Understanding Meaning and Knowledge Representation: From Theoretical and Cognitive Linguistics to Natural Language Processing. Newcastle Upon Tyne: Cambridge Scholars Publishing, 249-258.

Filatova, E., & Hatzivassiloglou, V. (2004). A formal model for information selection in multi-sentence text extraction. Proceedings of the 20th international conference on Computational Linguistics - COLING ’04. doi:10.3115/1220355.1220412

Filatova, E., & Hatzivassiloglou, V. (2004). A formal model for information selection in multi-sentence text extraction. Proceedings of the 20th international conference on Computational Linguistics - COLING ’04. doi:10.3115/1220355.1220412

Grefenstette, Gregory. 1998. Producing Intelligent Telegraphic Text Reduction to Provide an Audio Scanning Service for the Blind. Proceedings of the AAAI Symposium on Intelligent Text Summarization, 111–117.

Hatzivassiloglou, Vasileios, Judith L. Klavans, Melissa L. Holcombe, Regina Barzilay, Min-Yen Kan and Kathleen R. McKeown. 2001. SIMFINDER: A flexible clustering tool for summarization. Proceedings of the NAACL Workshop on Automatic Summarization, 41-49.

Jing, Hongyan and Kathleen R. McKeown. 2000. Cut and paste based text summarization. Proceedings of the North American chapter of the Association for Computational Linguistics Conference, 178-185.

Jing, H. (2000). Sentence reduction for automatic text summarization. Proceedings of the sixth conference on Applied natural language processing -. doi:10.3115/974147.974190

Jurafsky, Daniel and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. 2nd edition. Pearson Education Inc.

Lewis, David Dolan. 1999. An evaluation of phrasal and clustered representations on a text categorization task. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1992), 37-50.

Luhn, H. P. (1958). The Automatic Creation of Literature Abstracts. IBM Journal of Research and Development, 2(2), 159-165. doi:10.1147/rd.22.0159

Mani, Inderjeet. 2001. Summarization Evaluation: An Overview. Proceedings of the NTCIR Workshop 2 Meeting on Evaluation of Chinese and Japanese Text Retrieval and Text Summarization. Tokyo: National Institute of Informatics.

McDonald, Ryan. 2006. Discriminative sentence compression with soft syntactic constraints. Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, 297–304.

Morris, Jane and Graeme Hirst. 1991. Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Computational Linguistics, 17(1): 21–48.

Nolan, Brian (2016): What can Theoretical Linguistics do for Natural Language Processing Research? In Peri-an-Pascual, Carlos and Eva M. Mestre-Mestre (eds.): Understanding Meaning and Knowledge Representation: From Theoretical and Cognitive Linguistics to Natural Language Processing. Newcastle Upon Tyne: Cambridge Scholars Publishing, 235-248.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286. doi:10.1109/5.18626

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286. doi:10.1109/5.18626

Schwartz, Richard, Toru Imai, Francis Kubala, Long Nguyen and John Makhoul. 1997. A maximum likelihood model for topic classification of broadcast news. Proceedings of the Fifth European Speech Communication Association Conference on Speech Communication and Technology (Eurospeech-97).

Van Valin, R. D. J. (2005). Exploring the Syntax–Semantics Interface. doi:10.1017/cbo9780511610578

Van Valin, R. D. J. (2005). Exploring the Syntax–Semantics Interface. doi:10.1017/cbo9780511610578

Van Valin, R. D. J. (2005). Exploring the Syntax–Semantics Interface. doi:10.1017/cbo9780511610578

Van Valin, R. D. J. (2005). Exploring the Syntax–Semantics Interface. doi:10.1017/cbo9780511610578

Yih, Wen Tau, Joshua Goodman, Lucy Vanderwende and Hisami Suzuki. 2007. Multi-document summarization by maximizing informative content-words. Proceedings of the International Joint Conference on Artificial Intelligence, 1776-1782.

Zajic, D., Dorr, B. J., Lin, J., & Schwartz, R. (2007). Multi-candidate reduction: Sentence compression as a tool for document summarization tasks. Information Processing & Management, 43(6), 1549-1570. doi:10.1016/j.ipm.2007.01.016

[-]

This item appears in the following Collection(s)

Show full item record