- -

Birefringence effects in multi-core fiber: coupled local-mode theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Birefringence effects in multi-core fiber: coupled local-mode theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Macho-Ortiz, Andrés es_ES
dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Fraile-Peláez, F. Javier es_ES
dc.contributor.author Morant Pérez, María es_ES
dc.contributor.author Llorente Sáez, Roberto es_ES
dc.date.accessioned 2017-07-07T12:55:59Z
dc.date.available 2017-07-07T12:55:59Z
dc.date.issued 2016-09-19
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/84757
dc.description © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited es_ES
dc.description.abstract In this paper, we evaluate experimentally and model theoretically the intra- and inter-core crosstalk between the polarized core modes in single-mode multi-core fiber media including temporal and longitudinal birefringent effects. Specifically, extensive experimental results on a four-core fiber indicate that the temporal fluctuation of fiber birefringence modifies the intra- and inter-core crosstalk behavior in both linear and nonlinear optical power regimes. To gain theoretical insight into the experimental results, we introduce an accurate multi-core fiber model based on local modes and perturbation theory, which is derived from the Maxwell equations including both longitudinal and temporal birefringent effects. Numerical calculations based on the developed theory are found to be in good agreement with the experimental data. es_ES
dc.description.sponsorship This work has been partly funded by Spain National Plan project MINECO/FEDER UE XCORE TEC2015-70858-C2-1-R; HIDRASENSE RTC-2014-2232-3; European Regional Development Fund (ERDF) and the Galician Regional Government under project GRC2015/018. A. Macho and M. Morant work was supported by BES-2013-062952 F.P.I. Grant and postdoc UPV PAID-10-14 program, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber optics and optical communications es_ES
dc.subject Fiber characterization es_ES
dc.subject Fiber measurements es_ES
dc.subject Nonlinear optics es_ES
dc.subject Fibers. es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Birefringence effects in multi-core fiber: coupled local-mode theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.24.021415
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70858-C2-1-R/ES/TECNOLOGIA DE TRANSMISION OPTICA MEDIANTE MULTIPLEXACION MULTIDIMENSIONAL EN FIBRA MULTI-NUCLEO PARA REDES OPTICAS DE ACCESO Y DE TRANSPORTE CELULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2014-2232-3Q4618002BC.VALENCIANA/ES/NUEVO TECNOLOGÍA FOTONICA DE DETECCIÓN AVANZADA DE AIRE Y VAPOR DE AGUA EN FLUIDOS DE CENTRALES DE GENERACIÓN ELÉCTRICA PARA LA GESTIÓN EFICIENTE DE LOS RECURSOS ENERGÉTICOS-HIDRASENSE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//GRC2015%2F018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-062952/ES/BES-2013-062952/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Macho-Ortiz, A.; García Meca, C.; Fraile-Peláez, FJ.; Morant Pérez, M.; Llorente Sáez, R. (2016). Birefringence effects in multi-core fiber: coupled local-mode theory. Optics Express. 24(19):21415-21434. https://doi.org/10.1364/OE.24.021415 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.24.021415 es_ES
dc.description.upvformatpinicio 21415 es_ES
dc.description.upvformatpfin 21434 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 322729 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Mizuno, T., Takara, H., Sano, A., & Miyamoto, Y. (2016). Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi-Mode Fiber. Journal of Lightwave Technology, 34(2), 582-592. doi:10.1109/jlt.2015.2482901 es_ES
dc.description.references Morant, M., Macho, A., & Llorente, R. (2016). On the Suitability of Multicore Fiber for LTE–Advanced MIMO Optical Fronthaul Systems. Journal of Lightwave Technology, 34(2), 676-682. doi:10.1109/jlt.2015.2507137 es_ES
dc.description.references Hayashi, T., Sasaki, T., Sasaoka, E., Saitoh, K., & Koshiba, M. (2013). Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. Optics Express, 21(5), 5401. doi:10.1364/oe.21.005401 es_ES
dc.description.references Fini, J. M., Zhu, B., Taunay, T. F., Yan, M. F., & Abedin, K. S. (2012). Statistical Models of Multicore Fiber Crosstalk Including Time Delays. Journal of Lightwave Technology, 30(12), 2003-2010. doi:10.1109/jlt.2012.2188017 es_ES
dc.description.references Luis, R. S., Puttnam, B. J., Cartaxo, A. V. T., Klaus, W., Mendinueta, J. M. D., Awaji, Y., … Sasaki, T. (2016). Time and Modulation Frequency Dependence of Crosstalk in Homogeneous Multi-Core Fibers. Journal of Lightwave Technology, 34(2), 441-447. doi:10.1109/jlt.2015.2474128 es_ES
dc.description.references Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., & Sasaoka, E. (2012). Characterization of Crosstalk in Ultra-Low-Crosstalk Multi-Core Fiber. Journal of Lightwave Technology, 30(4), 583-589. doi:10.1109/jlt.2011.2177810 es_ES
dc.description.references Fini, J. M., Zhu, B., Taunay, T. F., & Yan, M. F. (2010). Statistics of crosstalk in bent multicore fibers. Optics Express, 18(14), 15122. doi:10.1364/oe.18.015122 es_ES
dc.description.references Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2011). Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Optics Express, 19(26), B102. doi:10.1364/oe.19.00b102 es_ES
dc.description.references Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., & Sasaoka, E. (2011). Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express, 19(17), 16576. doi:10.1364/oe.19.016576 es_ES
dc.description.references Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2012). Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers. IEEE Photonics Journal, 4(5), 1987-1995. doi:10.1109/jphot.2012.2221085 es_ES
dc.description.references Macho, A., Morant, M., & Llorente, R. (2015). Experimental evaluation of nonlinear crosstalk in multi-core fiber. Optics Express, 23(14), 18712. doi:10.1364/oe.23.018712 es_ES
dc.description.references Macho, A., Morant, M., & Llorente, R. (2016). Unified Model of Linear and Nonlinear Crosstalk in Multi-Core Fiber. Journal of Lightwave Technology, 34(13), 3035-3046. doi:10.1109/jlt.2016.2552958 es_ES
dc.description.references Mecozzi, A., Antonelli, C., & Shtaif, M. (2012). Coupled Manakov equations in multimode fibers with strongly coupled groups of modes. Optics Express, 20(21), 23436. doi:10.1364/oe.20.023436 es_ES
dc.description.references Mecozzi, A., Antonelli, C., & Shtaif, M. (2012). Nonlinear propagation in multi-mode fibers in the strong coupling regime. Optics Express, 20(11), 11673. doi:10.1364/oe.20.011673 es_ES
dc.description.references Mumtaz, S., Essiambre, R.-J., & Agrawal, G. P. (2013). Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations. Journal of Lightwave Technology, 31(3), 398-406. doi:10.1109/jlt.2012.2231401 es_ES
dc.description.references Palmieri, L., & Galtarossa, A. (2014). Coupling Effects Among Degenerate Modes in Multimode Optical Fibers. IEEE Photonics Journal, 6(6), 1-8. doi:10.1109/jphot.2014.2343998 es_ES
dc.description.references Antonelli, C., Mecozzi, A., & Shtaif, M. (2015). The delay spread in fibers for SDM transmission: dependence on fiber parameters and perturbations. Optics Express, 23(3), 2196. doi:10.1364/oe.23.002196 es_ES
dc.description.references Marcuse, D. (1975). Coupled-Mode Theory for Anisotropic Optical Waveguides. Bell System Technical Journal, 54(6), 985-995. doi:10.1002/j.1538-7305.1975.tb02878.x es_ES
dc.description.references Wong, D. (1990). Thermal stability of intrinsic stress birefringence in optical fibers. Journal of Lightwave Technology, 8(11), 1757-1761. doi:10.1109/50.60576 es_ES
dc.description.references Gloge, D. (1971). Weakly Guiding Fibers. Applied Optics, 10(10), 2252. doi:10.1364/ao.10.002252 es_ES
dc.description.references Cartaxo, A. V. T., Luis, R. S., Puttnam, B. J., Hayashi, T., Awaji, Y., & Wada, N. (2016). Dispersion Impact on the Crosstalk Amplitude Response of Homogeneous Multi-Core Fibers. IEEE Photonics Technology Letters, 28(17), 1858-1861. doi:10.1109/lpt.2016.2573925 es_ES
dc.description.references Poole, C. D., & Favin, D. L. (1994). Polarization-mode dispersion measurements based on transmission spectra through a polarizer. Journal of Lightwave Technology, 12(6), 917-929. doi:10.1109/50.296179 es_ES
dc.description.references Karlsson, O., Brentel, J., & Andrekson, P. A. (2000). Long-term measurement of PMD and polarization drift in installed fibers. Journal of Lightwave Technology, 18(7), 941-951. doi:10.1109/50.850739 es_ES
dc.description.references Brodsky, M., Frigo, N. J., Boroditsky, M., & Tur, M. (2006). Polarization Mode Dispersion of Installed Fibers. Journal of Lightwave Technology, 24(12), 4584-4599. doi:10.1109/jlt.2006.885781 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem