- -

Figures of merit for self-beating filtered microwave photonic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Figures of merit for self-beating filtered microwave photonic systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-López, Daniel es_ES
dc.contributor.author Gasulla Mestre, Ivana es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Sánchez Fandiño, Javier Antonio es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.contributor.author Alavi, Hossein es_ES
dc.date.accessioned 2017-07-10T07:20:35Z
dc.date.available 2017-07-10T07:20:35Z
dc.date.issued 2016-05-02
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/84793
dc.description © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited es_ES
dc.description.abstract [EN] We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed. es_ES
dc.description.sponsorship This research work is funded by INTEL Corporation. In addition, the authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO II/2013/012, Spanish MINECO projects TEC2013-42332-P PIF4ESP, TEC2015-69787-REDT PIC4TB and TEC2014-60378-C2-1-R MEMES, as well as the projects FEDER UPVOV 10-3E-492 and FEDER UPVOV 08-3E-008. The work of D. Perez was supported by the FPI-UPV Grant Program from the Universitat Politecnica de Valencia and the work of I. Gasulla was supported by the Spanish MINECO through the Ramon y Cajal Program.
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber optics links and subsystems (060.2360) es_ES
dc.subject Radio frequency photonics (060.5625) es_ES
dc.subject Optoelectronics (130.0250) es_ES
dc.subject Integrated optics devices (130.3120) es_ES
dc.subject Microwaves (350.4010) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Figures of merit for self-beating filtered microwave photonic systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.24.010087
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-69787-REDT/ES/PHOTONIC INTEGRATED CIRCUITS FOR TELECOM & BIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Pérez-López, D.; Gasulla Mestre, I.; Capmany Francoy, J.; Sánchez Fandiño, JA.; Muñoz Muñoz, P.; Alavi, H. (2016). Figures of merit for self-beating filtered microwave photonic systems. Optics Express. 24(9):10087-10102. https://doi.org/10.1364/OE.24.010087 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.24.010087 es_ES
dc.description.upvformatpinicio 10087 es_ES
dc.description.upvformatpfin 10102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 324689 es_ES
dc.identifier.pmid 27137619
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Intel Corporation es_ES
dc.description.references Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 es_ES
dc.description.references Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 es_ES
dc.description.references Mitchell, J. E. (2014). Integrated Wireless Backhaul Over Optical Access Networks. Journal of Lightwave Technology, 32(20), 3373-3382. doi:10.1109/jlt.2014.2321774 es_ES
dc.description.references Pastor, D., Ortega, B., Capmany, J., Fonjallaz, P.-Y., & Popov, M. (2004). Tunable microwave photonic filter for noise and interference suppression in UMTS base stations. Electronics Letters, 40(16), 997. doi:10.1049/el:20045500 es_ES
dc.description.references Long live radio. (2011). Nature Photonics, 5(12), 723-723. doi:10.1038/nphoton.2011.316 es_ES
dc.description.references Ricchiuti, A. L., Hervas, J., Barrera, D., Sales, S., & Capmany, J. (2014). Microwave Photonics Filtering Technique for Interrogating a Very-Weak Fiber Bragg Grating Cascade Sensor. IEEE Photonics Journal, 6(6), 1-10. doi:10.1109/jphot.2014.2363443 es_ES
dc.description.references Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., & Capmany, J. (2013). Integrated microwave photonics. Laser & Photonics Reviews, 7(4), 506-538. doi:10.1002/lpor.201200032 es_ES
dc.description.references Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348 es_ES
dc.description.references Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937 es_ES
dc.description.references Gasulla, I., & Capmany, J. (2011). Analytical model and figures of merit for filtered Microwave photonic links. Optics Express, 19(20), 19758. doi:10.1364/oe.19.019758 es_ES
dc.description.references Xie, H., Oliaei, O., Rakers, P., Fernandez, R., Xiang, J., Parkes, J., … Schwartz, D. B. (2012). Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS Receiver With Diversity. IEEE Transactions on Microwave Theory and Techniques, 60(5), 1390-1396. doi:10.1109/tmtt.2012.2187796 es_ES
dc.description.references Rasras, M. S., Chen, Y.-K., Tu, K.-Y., Earnshaw, M. P., Pardo, F., Cappuzzo, M. A., … DeSalvo, R. (2012). Reconfigurable Linear Optical FM Discriminator. IEEE Photonics Technology Letters, 24(20), 1856-1859. doi:10.1109/lpt.2012.2217483 es_ES
dc.description.references Alipour, P., Eftekhar, A. A., Atabaki, A. H., Li, Q., Yegnanarayanan, S., Madsen, C. K., & Adibi, A. (2011). Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators. Optics Express, 19(17), 15899. doi:10.1364/oe.19.015899 es_ES
dc.description.references Ibrahim, S., Fontaine, N. K., Djordjevic, S. S., Guan, B., Su, T., Cheung, S., … Yoo, S. J. B. (2011). Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter. Optics Express, 19(14), 13245. doi:10.1364/oe.19.013245 es_ES
dc.description.references Fandiño, J. S., Doménech, J. D., Muñoz, P., & Capmany, J. (2013). Integrated InP frequency discriminator for Phase-modulated microwave photonic links. Optics Express, 21(3), 3726. doi:10.1364/oe.21.003726 es_ES
dc.description.references Pérez, D., Gasulla, I., & Capmany, J. (2015). Software-defined reconfigurable microwave photonics processor. Optics Express, 23(11), 14640. doi:10.1364/oe.23.014640 es_ES
dc.description.references Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 es_ES
dc.description.references Liu, W., Li, M., Guzzon, R. S., Norberg, E. J., Parker, J. S., Lu, M., … Yao, J. (2016). A fully reconfigurable photonic integrated signal processor. Nature Photonics, 10(3), 190-195. doi:10.1038/nphoton.2015.281 es_ES
dc.description.references Madsen, C. K. (1998). Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photonics Technology Letters, 10(8), 1136-1138. doi:10.1109/68.701527 es_ES
dc.description.references Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem