Galindo Pastor, C.; Monserrat Delpalillo, FJ. (2016). The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Advances in Mathematics. 290:1040-1061. https://doi.org/10.1016/j.aim.2015.12.015
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84800
Title:
|
The cone of curves and the Cox ring of rational surfaces given by divisorial valuations
|
Author:
|
Galindo Pastor, Carlos
Monserrat Delpalillo, Francisco José
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
We consider surfaces X defined by plane divisorial valuations v of the quotient field of the local ring R at a closed point p of the projective plane P-2 over an arbitrary algebraically closed field k and centered at R. ...[+]
We consider surfaces X defined by plane divisorial valuations v of the quotient field of the local ring R at a closed point p of the projective plane P-2 over an arbitrary algebraically closed field k and centered at R. We prove that the regularity of the cone of curves of X is equivalent to the fact that v is non-positive on Op(2) (P-2 \ L), where L is a certain line containing p. Under these conditions, we characterize when the characteristic cone of X is closed and its Cox ring finitely generated. Equivalent conditions to the fact that v is negative on Opt (P-2 \ L) k are also given. (C) 2015 Published by Elsevier Inc.
[-]
|
Subjects:
|
Cone of curves
,
Cox ring
,
Rational surfaces
,
Plane divisorial valuation
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Advances in Mathematics. (issn:
0001-8708
)
|
DOI:
|
10.1016/j.aim.2015.12.015
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.aim.2015.12.015
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2012-36917-C03-03/ES/SINGULARIDADES E INFORMACION. APLICACIONES A CAMPOS VECTORIALES Y CODIGOS CORRECTORES/
info:eu-repo/grantAgreement/UJI//P1·1B2015-02/
|
Thanks:
|
Supported by Spain Ministry of Economy MTM2012-36917-C03-03 and Universitat Jaume I P1-1B201502.
|
Type:
|
Artículo
|