Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-López, Daniel | es_ES |
dc.contributor.author | Gasulla Mestre, Ivana | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.contributor.author | Soref, Richard A. | es_ES |
dc.date.accessioned | 2017-07-10T07:48:08Z | |
dc.date.available | 2017-07-10T07:48:08Z | |
dc.date.issued | 2016-05-30 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/84801 | |
dc.description | © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited | es_ES |
dc.description.abstract | [EN] We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO II/2013/012, Spanish MINECO projects TEC2013-42332-P PIF4ESP, TEC2015-69787-REDT PIC4TB and TEC2014-60378-C2-1-R MEMES, as well as the projects FEDER UPVOV 10-3E-492 and FEDER UPVOV 08-3E-008. The work of D. Perez was supported by the FPI-UPV Grant Program from the Universitat Politecnica de Valencia and the work of I. Gasulla was supported by the Spanish MINECO through the Ramon y Cajal Program. R. Soref is supported by the Air Force Office of Scientific Research. | |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Integrated optics devices (130.3120) | es_ES |
dc.subject | Optoelectronics(130.0250) | es_ES |
dc.subject | Fiber optics links and subsystems (060.2360) | es_ES |
dc.subject | Radio frequency photonics (060.5625) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Reconfigurable lattice mesh designs for programmable photonic processors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.24.012093 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-69787-REDT/ES/PHOTONIC INTEGRATED CIRCUITS FOR TELECOM & BIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Pérez-López, D.; Gasulla Mestre, I.; Capmany Francoy, J.; Soref, RA. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express. 24(11):12093-12106. https://doi.org/10.1364/OE.24.012093 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.24.012093 | es_ES |
dc.description.upvformatpinicio | 12093 | es_ES |
dc.description.upvformatpfin | 12106 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 324686 | es_ES |
dc.identifier.pmid | 27410130 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265 | es_ES |
dc.description.references | Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 | es_ES |
dc.description.references | Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 | es_ES |
dc.description.references | Mitchell, J. E. (2014). Integrated Wireless Backhaul Over Optical Access Networks. Journal of Lightwave Technology, 32(20), 3373-3382. doi:10.1109/jlt.2014.2321774 | es_ES |
dc.description.references | Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001 | es_ES |
dc.description.references | Pérez, D., Gasulla, I., & Capmany, J. (2015). Software-defined reconfigurable microwave photonics processor. Optics Express, 23(11), 14640. doi:10.1364/oe.23.014640 | es_ES |
dc.description.references | Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254 | es_ES |
dc.description.references | Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854 | es_ES |
dc.description.references | Liu, W., Li, M., Guzzon, R. S., Norberg, E. J., Parker, J. S., Lu, M., … Yao, J. (2016). A fully reconfigurable photonic integrated signal processor. Nature Photonics, 10(3), 190-195. doi:10.1038/nphoton.2015.281 | es_ES |
dc.description.references | Soref, R. (2014). Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection. Photonics Research, 2(5), 102. doi:10.1364/prj.2.000102 | es_ES |
dc.description.references | Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937 | es_ES |