- -

Using latent features for short-term person re-identification with RGB-D cameras

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using latent features for short-term person re-identification with RGB-D cameras

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver Moll, Javier es_ES
dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Albiol Colomer, Antonio José es_ES
dc.contributor.author Mossi García, José Manuel es_ES
dc.date.accessioned 2017-07-10T09:35:42Z
dc.date.available 2017-07-10T09:35:42Z
dc.date.issued 2016-05
dc.identifier.issn 1433-7541
dc.identifier.uri http://hdl.handle.net/10251/84821
dc.description.abstract This paper presents a system for people re-identification in uncontrolled scenarios using RGB-depth cameras. Compared to conventional RGB cameras, the use of depth information greatly simplifies the tasks of segmentation and tracking. In a previous work, we proposed a similar architecture where people were characterized using color-based descriptors that we named bodyprints. In this work, we propose the use of latent feature models to extract more relevant information from the bodyprint descriptors by reducing their dimensionality. Latent features can also cope with missing data in case of occlusions. Different probabilistic latent feature models, such as probabilistic principal component analysis and factor analysis, are compared in the paper. The main difference between the models is how the observation noise is handled in each case. Re-identification experiments have been conducted in a real store where people behaved naturally. The results show that the use of the latent features significantly improves the re-identification rates compared to state-of-the-art works. es_ES
dc.description.sponsorship The work presented in this paper has been funded by the Spanish Ministry of Science and Technology under the CICYT contract TEVISMART, TEC2009-09146. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Pattern Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bodyprint es_ES
dc.subject Probabilistic PCA es_ES
dc.subject Factor analysis es_ES
dc.subject Missing data es_ES
dc.subject Re-identification es_ES
dc.subject Surveillance es_ES
dc.subject Person detection es_ES
dc.subject Appearance es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Using latent features for short-term person re-identification with RGB-D cameras es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10044-015-0489-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-09146/ES/Nuevas Tecnicas Para Video Vigilancia Inteligente/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Oliver Moll, J.; Albiol Colomer, A.; Albiol Colomer, AJ.; Mossi García, JM. (2016). Using latent features for short-term person re-identification with RGB-D cameras. Pattern Analysis and Applications. 19(2):549-561. https://doi.org/10.1007/s10044-015-0489-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10044-015-0489-8 es_ES
dc.description.upvformatpinicio 549 es_ES
dc.description.upvformatpfin 561 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 328057 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references http://kinectforwindows.org/ es_ES
dc.description.references http://www.gpiv.upv.es/videoresearch/personindexing.html es_ES
dc.description.references Albiol A, Albiol A, Oliver J, Mossi JM (2012) Who is who at different cameras. Matching people using depth cameras. Comput Vis IET 6(5):378–387 es_ES
dc.description.references Bak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using haar-based and dcd-based signature. In: 2nd workshop on activity monitoring by multi-camera surveillance systems, AMMCSS 2010, in conjunction with 7th IEEE international conference on advanced video and signal-based surveillance, AVSS. AVSS es_ES
dc.description.references Bak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using spatial covariance regions of human body parts. In: Seventh IEEE international conference on advanced video and signal based surveillance. pp. 435–440 es_ES
dc.description.references Bak S, Corvee E, Bremond F, Thonnat M (2011) Multiple-shot human re-identification by mean riemannian covariance grid. In: Advanced video and signal-based surveillance. Klagenfurt, Autriche. http://hal.inria.fr/inria-00620496 es_ES
dc.description.references Baltieri D, Vezzani R, Cucchiara R, Utasi A, BenedeK C, Szirányi T (2011) Multi-view people surveillance using 3d information. In: ICCV workshops. pp. 1817–1824 es_ES
dc.description.references Barbosa BI, Cristani M, Del Bue A, Bazzani L, Murino V (2012) Re-identification with rgb-d sensors. In: First international workshop on re-identification es_ES
dc.description.references Basilevsky A (1994) Statistical factor analysis and related methods: theory and applications. Willey, New York es_ES
dc.description.references Bäuml M, Bernardin K, Fischer k, Ekenel HK, Stiefelhagen R (2010) Multi-pose face recognition for person retrieval in camera networks. In: International conference on advanced video and signal-based surveillance es_ES
dc.description.references Bazzani L, Cristani M, Perina A, Farenzena M, Murino V (2010) Multiple-shot person re-identification by hpe signature. In: Proceedings of the 2010 20th international conference on pattern recognition. Washington, DC, USA, pp. 1413–1416 es_ES
dc.description.references Bird ND, Masoud O, Papanikolopoulos NP, Isaacs A (2005) Detection of loitering individuals in public transportation areas. IEEE Trans Intell Transp Syst 6(2):167–177 es_ES
dc.description.references Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Secaucus es_ES
dc.description.references Cha SH (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1(4):300–307 es_ES
dc.description.references Cheng YM, Zhou WT, Wang Y, Zhao CH, Zhang SW (2009) Multi-camera-based object handoff using decision-level fusion. In: Conference on image and signal processing. pp. 1–5 es_ES
dc.description.references Dikmen M, Akbas E, Huang TS, Ahuja N (2010) Pedestrian recognition with a learned metric. In: Asian conference in computer vision es_ES
dc.description.references Doretto G, Sebastian T, Tu P, Rittscher J (2011) Appearance-based person reidentification in camera networks: problem overview and current approaches. J Ambient Intell Humaniz Comput 2:1–25 es_ES
dc.description.references Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition (CVPR 2010). IEEE Computer Society, San Francisco, CA, USA es_ES
dc.description.references Fodor I (2002) A survey of dimension reduction techniques. Technical report. Lawrence Livermore National Laboratory es_ES
dc.description.references Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969 es_ES
dc.description.references Gandhi T, Trivedi M (2006) Panoramic appearance map (pam) for multi-camera based person re-identification. Advanced Video and Signal Based Surveillance, IEEE Conference on, p. 78 es_ES
dc.description.references Garcia J, Gardel A, Bravo I, Lazaro J (2014) Multiple view oriented matching algorithm for people reidentification. Ind Inform IEEE Trans 10(3):1841–1851 es_ES
dc.description.references Gheissari N, Sebastian TB, Hartley R (2006) Person reidentification using spatiotemporal appearance. CVPR 2:1528–1535 es_ES
dc.description.references Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of IEEE international workshop on performance evaluation for tracking and surveillance (PETS) es_ES
dc.description.references Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proceedings of the 10th european conference on computer vision: part I. Berlin, pp. 262–275 (2008) es_ES
dc.description.references Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 99:1957–2000 es_ES
dc.description.references Javed O, Shafique O, Rasheed Z, Shah M (2008) Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views. Comput Vis Image Underst 109(2):146–162 es_ES
dc.description.references Kai J, Bodensteiner C, Arens M (2011) Person re-identification in multi-camera networks. In: Computer vision and pattern recognition workshops (CVPRW), 2011 IEEE computer society conference on, pp. 55–61 es_ES
dc.description.references Kuo CH, Huang C, Nevatia R (2010) Inter-camera association of multi-target tracks by on-line learned appearance affinity models. Proceedings of the 11th european conference on computer vision: part I, ECCV’10. Springer, Berlin, pp 383–396 es_ES
dc.description.references Lan R, Zhou Y, Tang YY, Chen C (2014) Person reidentification using quaternionic local binary pattern. In: Multimedia and expo (ICME), 2014 IEEE international conference on, pp. 1–6 es_ES
dc.description.references Loy CC, Liu C, Gong S (2013) Person re-identification by manifold ranking. In: icip. pp. 3318–3325 es_ES
dc.description.references Madden C, Cheng E, Piccardi M (2007) Tracking people across disjoint camera views by an illumination-tolerant appearance representation. Mach Vis Appl 18:233–247 es_ES
dc.description.references Mazzon R, Tahir SF, Cavallaro A (2012) Person re-identification in crowd. Pattern Recogn Lett 33(14):1828–1837 es_ES
dc.description.references Oliveira IO, Souza Pio JL (2009) People reidentification in a camera network. In: Eighth IEEE international conference on dependable, autonomic and secure computing. pp. 461–466 es_ES
dc.description.references Papadakis P, Pratikakis I, Theoharis T, Perantonis SJ (2010) Panorama: a 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2–3):177–192 es_ES
dc.description.references Prosser B, Zheng WS, Gong S, Xiang T (2010) Person re-identification by support vector ranking. In: Proceedings of the British machine vision conference. BMVA Press, pp. 21.1–21.11 es_ES
dc.description.references Roweis S (1998) Em algorithms for pca and spca. In: Advances in neural information processing systems. MIT Press, Cambridge, pp. 626–632 (1998) es_ES
dc.description.references Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: CVPR. pp. 3318–3325 es_ES
dc.description.references Satta R, Fumera G, Roli F (2012) Fast person re-identification based on dissimilarity representations. Pattern Recogn Lett, Special Issue on Novel Pattern Recognition-Based Methods for Reidentification in Biometric Context 33:1838–1848 es_ES
dc.description.references Tao D, Jin L, Wang Y, Li X (2015) Person reidentification by minimum classification error-based kiss metric learning. Cybern IEEE Trans 45(2):242–252 es_ES
dc.description.references Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B 61:611–622 es_ES
dc.description.references Tisse CL, Martin L, Torres L, Robert M (2002) Person identification technique using human iris recognition. In: Proceedings of vision interface, pp 294–299 es_ES
dc.description.references Vandergheynst P, Bierlaire M, Kunt M, Alahi A (2009) Cascade of descriptors to detect and track objects across any network of cameras. Comput Vis Image Underst, pp 1413–1416 es_ES
dc.description.references Verbeek J (2009) Notes on probabilistic pca with missing values. Technical report es_ES
dc.description.references Wang D, Chen CO, Chen TY, Lee CT (2009) People recognition for entering and leaving a video surveillance area. In: Fourth international conference on innovative computing, information and control. pp. 334–337 es_ES
dc.description.references Zhang Z, Troje NF (2005) View-independent person identification from human gait. Neurocomputing 69:250–256 es_ES
dc.description.references Zhao T, Aggarwal M, Kumar R, Sawhney H (2005) Real-time wide area multi-camera stereo tracking. In: IEEE computer society conference on computer vision and pattern recognition. pp. 976–983 es_ES
dc.description.references Zheng S, Xie B, Huang K, Tao D (2011) Multi-view pedestrian recognition using shared dictionary learning with group sparsity. In: Lu BL, Zhang L, Kwok JT (eds) ICONIP (3), Lecture notes in computer science, vol 7064. Springer, New York, pp. 629–638 es_ES
dc.description.references Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Computer vision and pattern recognition (CVPR), 2011 IEEE conference on. pp. 649–656 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem