- -

Local Deep Neural Networks for gender recognition

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Local Deep Neural Networks for gender recognition

Show full item record

Mansanet Sandín, J.; Albiol Colomer, A.; Paredes Palacios, R. (2016). Local Deep Neural Networks for gender recognition. Pattern Recognition Letters. 70:80-86. https://doi.org/10.1016/j.patrec.2015.11.015

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84826

Files in this item

Item Metadata

Title: Local Deep Neural Networks for gender recognition
Author: Mansanet Sandín, Jorge Albiol Colomer, Alberto Paredes Palacios, Roberto
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
Deep learning methods are able to automatically discover better representations of the data to improve the performance of the classifiers. However, in computer vision tasks, such as the gender recognition problem, sometimes ...[+]
Subjects: Gender recognition , Face analysis , Deep learning , Local Deep Neural Network
Copyrigths: Reserva de todos los derechos
Source:
Pattern Recognition Letters. (issn: 0167-8655 )
DOI: 10.1016/j.patrec.2015.11.015
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.patrec.2015.11.015
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2009-09146/ES/Nuevas Tecnicas Para Video Vigilancia Inteligente/
info:eu-repo/grantAgreement/MICINN//BES-2010-032945/ES/BES-2010-032945/
Thanks:
This work was financially supported by the Ministerio de Ciencia e Innovacin (Spain), Plan Nacional de I-D+i, TEC2009-09146, and the FPI grant BES-2010-032945.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record