- -

Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Botella Mascarell, Carmen es_ES
dc.contributor.author Piñero Sipán, María Gemma es_ES
dc.contributor.author Diego Antón, María de es_ES
dc.date.accessioned 2017-07-10T11:49:08Z
dc.date.available 2017-07-10T11:49:08Z
dc.date.issued 2016-03
dc.identifier.issn 1018-4864
dc.identifier.uri http://hdl.handle.net/10251/84850
dc.description.abstract One of the techniques that has been recently identified for dealing with multi-user interference (MUI) in future communications systems is base station (BS) cooperation or joint processing. However, perfect MUI cancellation with this technique demands severe synchronization requirements, perfect and global channel state information (CSI), and an increased backhaul and signaling overhead. In this paper, we consider a more realistic layout with the aim of mitigating the MUI, where only local CSI is available at the BSs. Due to synchronization inaccuracies and errors in the channel estimation, the system becomes partially asynchronous. In the downlink of wideband code division multiple access based systems, this asynchronism stands for the loss of the orthogonality of the spreading codes allocated to users and thus, for an increase in the MUI level of the system. In this contribution, we propose a framework for mitigating the MUI which builds in three main steps: definition of a cooperation area based on the channel characteristics, statistical modeling of the average MUI power experienced by each user and a specific spreading code allocation scheme for users served with joint processing. This code allocation assigns spreading codes to users in such a way that minimum average cross-correlation between active users can be achieved. Interestingly, these steps can be performed with a limited amount of extra feedback from the user's side. es_ES
dc.description.sponsorship C. Botella's work has been partially supported by the Spanish MINECO Grants CONSOLIDER-INGENIO 2010 CSD 2008-00010 COMONSENS and RACHEL TEC2013-47141-C4-4-R. G. Pinero and M. de Diego's work has been supported by European Union ERDF and Spanish Government through TEC2012-38142-C04 Project, and Generalitat Valenciana through PROMETEOII/2014/003 Project. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Telecommunication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Coordinated MultiPoint es_ES
dc.subject WCDMA es_ES
dc.subject Multi-user interference mitigation es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11235-015-0011-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00010/ES/Foundations and Methodologies for Future Communication and Sensor Networks/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-47141-C4-4-R/ES/TECNICAS DE ACCESO RADIO PARA REDES INALAMBRICAS HETEROGENEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Botella Mascarell, C.; Piñero Sipán, MG.; Diego Antón, MD. (2016). Multi-user interference mitigation under limited feedback requirements for WCDMA systems with base station cooperation. Telecommunication Systems. 61(3):543-557. https://doi.org/10.1007/s11235-015-0011-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11235-015-0011-z es_ES
dc.description.upvformatpinicio 543 es_ES
dc.description.upvformatpfin 557 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 317282 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–50. es_ES
dc.description.references Hossain, E., & Lei, Z. (2013). Multicell cooperation. IEEE Wireless Communications, special issue, 20(1). es_ES
dc.description.references Karakayali, M. K., Foschini, G. J., & Valenzuela, R. A. (2006). Network coordination for spectrally efficient communications in cellular systems. IEEE Wireless Communications, 13(4), 56–61. es_ES
dc.description.references Du, Q., & Zhang, X. (2011). Base-station selection for QoS provisioning over distributed multi-user MIMO links in wireless networks. In Proceedings of IEEE INFOCOM. es_ES
dc.description.references 3GPP TR 36.819, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release 11), (2011). es_ES
dc.description.references 3GPP Release 11, Overview of 3GPP Release 11 V0.2.0 (2014). es_ES
dc.description.references Nokia Solutions and Networks, LTE-Advanced (Release 12 and Beyond). (2014). http://networks.nokia.com/file/29961/lte-advanced-rel12-and-beyond . es_ES
dc.description.references Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60. es_ES
dc.description.references Nokia Solutions and Networks, Looking ahead to 5G. (2013). http://networks.nokia.com//file/28771/nsn-5g-white-paper . es_ES
dc.description.references Ericsson, HSPA Evolution—beyond 3GPP Release 10. (2011). http://www.3g4g.co.uk/Hspa/HSPAE_WP_1107_Ericsson . es_ES
dc.description.references Nokia Siemens Networks, Long Term HSPA Evolution meets ITU IMT-Advanced requirements. (2012). http://networks.nokia.com/system/files/document/nokia_siemens_networks_long_term_hspa_evolution_meets_itu_imt-advanced_requirements_18_04_12_online.pdf . es_ES
dc.description.references Qualcomm Incorporated, HSPA+ Advanced Smart Networks: Multipoint Transmission. (2011). https://www.qualcomm.com/invention/research/projects/hspa-advanced/multiflow . es_ES
dc.description.references Nokia Solutions and Networks, Taking HSPA to the next level with Release 12 and Beyond. (2014). http://networks.nokia.com/file/30801/taking-hspa-to-the-next-level-with-release-12-and-beyond . es_ES
dc.description.references 3GPP TSG-RAN, RP-101439, Proposed study item on HSDPA multipoint transmission. (2010). es_ES
dc.description.references 3GPP TR 25.872, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; High Speed Packet Access (HSDPA) multipoint transmission (Release 11). (2011). es_ES
dc.description.references 3GPP TSG-RAN, RP-111375, HSDPA Multiflow data transmission. (2011). es_ES
dc.description.references 3GPP TSG-RAN WG1, R1–104913, Multi-cell transmission techniques for HSDPA. (2010). es_ES
dc.description.references 3GPP TSG-RAN WG1, R1–110123, Candidate schemes for multi-point HSDPA. (2011). es_ES
dc.description.references Hytonen, V., Puchko, O., Hohne, T., & Chapman, T. (2011). High-speed single-frequency network for HSDPA. In Proceedings of IEEE Swedish Communication Technologies Workshop. es_ES
dc.description.references Yang, W., Chang, Y., Liu, S., & Yang, D. (2011). Efficient multi-point transmission scheme for HSDPA networks. In Proceedings of IEEE Vehicular Technology Conference (VTC-Fall). es_ES
dc.description.references Petrov, D., Repo, I., & Lampinen, M. (2012). Overview of single frequency multipoint transmission concepts for HSDPA and performance evaluation of intra-site multiflow aggregation scheme. In Proceedings of IEEE Vehicular Technology Conference (VTC-Spring). es_ES
dc.description.references Yaver, A., Marsch, P., Pawlak, K., & Moya, F. S. (2012). On the joint usage of MIMO and multiflow in evolved HSPA networks. In Proceedings of IEEE International Conference on Communications (ICC). es_ES
dc.description.references Qualcomm Technologies. HSPA+ Multiflow. Solution for cell edge performance improvement and dynamic load balancing. (2014). https://www.qualcomm.com/media/documents/files/hspa-multiflow.pdf . es_ES
dc.description.references Nokia Solutions and Networks. (2014). Setting up HSPA+ heterogenous networks for the best customer experience. http://networks.nokia.com/file/31256/setting-up-hspa-heterogeneous-networks-for-the-best-customer-experience . es_ES
dc.description.references Venkatesan, S. (2007). Coordinating base stations for greater uplink spectral efficiency in a cellular network. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). es_ES
dc.description.references Boccardi, F., & Huang, H. (2007). Limited downlink network coordination in cellular networks. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). es_ES
dc.description.references Papadogiannis, A., Gesbert, D., & Hardouin, E. (2008). A dynamic clustering approach in wireless networks with multi-cell cooperative processing. In Proceedings of IEEE International Conference on Communications (ICC). es_ES
dc.description.references Boccardi, F., Huang, H., & Alexiou, A. (2008). Network MIMO with reduced backhaul requirements by MAC coordination. In Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers. es_ES
dc.description.references Zhang, H., Mehta, N. B., Molisch, A. F., Zhang, J., & Dai, H. (2008). Asynchronous interference mitigation in cooperative base station systems. IEEE Transactions on Wireless Communications, 7(1), 155–165. es_ES
dc.description.references Gee, S. B., Lei, Z., & Chew, Y. H. (2011). Cooperative multiuser MIMO precoding design for asynchronous interference mitigation. In Proceedings of IEEE Global Telecommunications Conference workshops (GLOBECOM). es_ES
dc.description.references Medjahdi, Y., Terre, M., Le Ruyet, D., Roviras, D., & Dziri, A. (2011). Performance analysis of asynchronous OFDM/FBMC based multi-cellular networks. IEEE Transactions on Wireless Communications, 10(8), 2630–2639. es_ES
dc.description.references Zarikoff, B. W., & Cavers, J. K. (2010). Coordinated multi-cell systems: Carrier frequency offset estimation and correction. IEEE Journal on Selected Areas in Communications, 28(9), 1490–1501. es_ES
dc.description.references Awoniyi, O., Mehta, N. B., & Greenstein, L. J. (2003). Characterizing the orthogonality factor in WCDMA downlinks. IEEE Transactions on Wireless Communications, 2(4), 621–625. es_ES
dc.description.references Mehta, N. B., Greenstein, L. J., Willis, T. M., & Kostic, Z. (2003). Analysis and results for the orthogonality factor in WCDMA downlinks. IEEE Transactions on Wireless Communications, 2(6), 1138–1149. es_ES
dc.description.references Mehta, N. B., Molisch, A. F., & Greenstein, L. J. (2006). Macrocell-wide behavior of the orthogonality factor in WCDMA downlinks. IEEE Transactions on Wireless Communications, 5(12), 3394–3399. es_ES
dc.description.references Botella, C., Piñero, G., González, A., & de Diego, M. (2006). Spreading sequence assignment in WCDMA for distributed antenna arrays based on interference knowledge. In Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC). es_ES
dc.description.references Chang, Y.-J., Tao, Z., Zhang, J., & Kuo, C.-C. J. (2008). A graph-based approach to multi-cell OFDMA downlink resource allocation. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM). es_ES
dc.description.references Pi $$\tilde{{\rm n}}$$ n ~ ero, G., Botella, C., González, A., de Diego, M., & Cardona, N. (2004). Downlink power control and beamforming for a cooperative wireless system. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). es_ES
dc.description.references Botella, C., Piñero, G., González, A., & de Diego, M. (2008). Coordination in a multi-cell multi-antenna multi-user W-CDMA system: A beamforming approach. IEEE Transactions on Wireless Communications, 7(11), 4479–4485. es_ES
dc.description.references 3GPP TR 25.996, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Release 11). (2012). es_ES
dc.description.references Cheun, K. (1997). Performance of direct-sequence spread-spectrum RAKE receivers with random spreading sequences. IEEE Transactions on Communications, 45(9), 1130–1143. es_ES
dc.description.references Gkonis, P. K., Tsoulos, G. V., & Kaklamani, D. I. (2011). Performance evaluation of MIMO-WCDMA cellular networks in multiuser frequency selective fading environments. Wireless Communications and Mobile Computing, 13(1), 72–84. es_ES
dc.description.references Bottomley, G. E., Ottosson, T., & Wang, Y.-P. E. (2000). A generalized RAKE receiver for interference suppression. IEEE Journal on Selected Areas in Communications, 18(8), 1536–1545. es_ES
dc.description.references Fulghum, T. L., Cairns, D., Cozzo, C., Wang, Y.-P. E., & Bottomley, G. E. (2009). Adaptive generalized rake reception in DS-CDMA systems. IEEE Transactions on Wireless Communications, 8(7), 3464–3474. es_ES
dc.description.references Wang, C.-X., Hong, X., Wu, H., & Xu, W. (2007). Spatial-temporal correlation properties of the 3GPP spatial channel model and the Kronecker MIMO channel model. EURASIP Journal on Wireless Communications and Networking, Article ID 39871. es_ES
dc.description.references Li, J., Svensson, T., Botella, C., Eriksson, T., Xu, X., & Chen, X. (2011). Joint scheduling and power control in coordinated multi-point clusters. In Proceedings of IEEE Vehicular Technology Conference (VTC-fall). es_ES
dc.description.references Botella, C., Svensson, T., Xu, X., & Hui, Z. (2010). On the performance of joint processing schemes over the cluster area. In Proceedings of IEEE Vehicular Technology Conference (VTC-spring). es_ES
dc.description.references Papadogiannis, A., Bang, H. J., Gesbert, D., & Hardouin, E. (2008). Downlink overhead reduction for multi-cell cooperative processing enabled wireless networks. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). es_ES
dc.description.references Mennerich, W., & Zirwas, W. (2010). Implementation issues of the partial CoMP concept. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). es_ES
dc.description.references 3GPP TSG-RAN WG1, R1–092657, Impact of propagation attenuations and delays of CoMP composite. (2009). es_ES
dc.description.references Minn, T., & Siu, K.-Y. (2000). Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA. IEEE Journal on Selected Areas in Communications, 18(8), 1429–1440. es_ES
dc.description.references Tseng, Y.-C., & Chao, C.-M. (2002). Code placement and replacement strategies for wideband CDMA OVSF code tree management. IEEE Transactions on Mobile Computing, 1(4), 293–302. es_ES
dc.description.references Dell’Amico, M., Merani, M. L., & Maffioli, F. (2004). A tree partitioning dynamic policy for OVSF codes assignment in wideband CDMA. IEEE Transactions on Wireless Communications, 3(4), 1013–1017. es_ES
dc.description.references Ulukus, S., & Yates, R. D. (2001). Iterative construction of optimum signature sequence sets in synchronous CDMA sytems. IEEE Transactions on Information Theory, 47(5), 1989–1998. es_ES
dc.description.references Chen, J.-T., Papadias, C., & Foschini, G. J. (2004). Space-time dynamic signature assignment for the reverse link of DS-CDMA systems. IEEE Transactions on Communications, 52(1), 120–129. es_ES
dc.description.references Gao, L., & Wong, T. F. (2004). Power control and spreading sequence allocation in a CDMA forward link. IEEE Transactions on Information Theory, 50(1), 105–124. es_ES
dc.description.references Papadogiannis, A., Hardouin, E., & Gesbert, D. (2008). A framework for decentralising multi-cell cooperative processing on the downlink. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM). es_ES
dc.description.references Skjevling, H., Gesbert, D., & Hjørungnes, A. (2008). Low-complexity distributed multibase transmission and scheduling. EURASIP Journal on Advances in Signal Processing, Article ID 741593. es_ES
dc.description.references Rashid-Farrokhi, F., Ray Liu, K. J., & Tassiulas, L. (1998). Transmit beamforming and power control for cellular wireless systems. IEEE Journal on Selected Areas in Communications, 16(8), 1437–1450. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem