- -

Potassium and Sodium Transport in Yeast

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potassium and Sodium Transport in Yeast

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yenush, Lynne es_ES
dc.date.accessioned 2017-07-11T08:00:52Z
dc.date.available 2017-07-11T08:00:52Z
dc.date.issued 2016
dc.identifier.isbn 978-3-319-25302-2
dc.identifier.isbn 978-3-319-25304-6
dc.identifier.issn 0065-2598
dc.identifier.uri http://hdl.handle.net/10251/84903
dc.description.abstract [EN] As the proper maintenance of intracellular potassium and sodium concentrations is vital for cell growth, all living organisms have developed a cohort of strategies to maintain proper monovalent cation homeostasis. In the model yeast Saccharomyces cerevisiae, potassium is accumulated to relatively high concentrations and is required for many aspects of cellular function, whereas high intracellular sodium/potassium ratios are detrimental to cell growth and survival. The fact that S. cerevisiae cells can grow in the presence of a broad range of concentrations of external potassium (10 M–2.5 M) and sodium (up to 1.5 M) indicates the existence of robust mechanisms that have evolved to maintain intracellular concentrations of these cations within appropriate limits. In this review, current knowledge regarding potassium and sodium transporters and their regulation will be summarized. The cellular responses to high sodium and potassium and potassium starvation will also be discussed, as well as applications of this knowledge to diverse fields, including antifungal treatments, bioethanol production and human disease. es_ES
dc.description.sponsorship L.Y. is funded by grant BFU2011-30197-C03-03 from the Spanish Ministry of Science and Innovation (Madrid, Spain) and EUI2009-04147 [Systems Biology of Microorganisms (SysMo2) European Research Area-Network (ERA-NET)].
dc.language Inglés es_ES
dc.publisher Kluwer es_ES
dc.relation.ispartof Advances in Experimental Medicine and Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ion homeostasis es_ES
dc.subject Potassium transport es_ES
dc.subject Sodium transport es_ES
dc.subject Trk1 es_ES
dc.subject Ena1 es_ES
dc.subject Nha1 es_ES
dc.subject Pma1 es_ES
dc.subject Yeast es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Potassium and Sodium Transport in Yeast es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/978-3-319-25304-6_8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-30197-C03-03/ES/PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURA Y PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2009-04147/ES/MODELADO DE REDES GENICAS Y DE PROTEINAS RELEVANTES EN LA HOMEOSTASIS DE CATIONES EN LEVADURA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Yenush, L. (2016). Potassium and Sodium Transport in Yeast. Advances in Experimental Medicine and Biology. 892:187-228. https://doi.org/10.1007/978-3-319-25304-6_8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-319-25304-6_8 es_ES
dc.description.upvformatpinicio 187 es_ES
dc.description.upvformatpfin 228 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 892 es_ES
dc.relation.senia 318947 es_ES
dc.identifier.pmid 26721275
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.description.references Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL et al (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283–291 es_ES
dc.description.references Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S et al (2000) X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 295:927–938 es_ES
dc.description.references Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144 es_ES
dc.description.references Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98 es_ES
dc.description.references Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279:4498–4506 es_ES
dc.description.references Alijo R, Ramos J (1993) Several routes of activation of the potassium uptake system of yeast. Biochim Biophys Acta 1179:224–228 es_ES
dc.description.references Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:3736–3740 es_ES
dc.description.references Anderson JA, Nakamura RL, Gaber RF (1994) Heterologous expression of K+ channels in Saccharomyces cerevisiae: strategies for molecular analysis of structure and function. Symp Soc Exp Biol 48:85–97 es_ES
dc.description.references André B, Scherens B (1995) The yeast YBR235w gene encodes a homolog of the mammalian electroneutral Na(+)-(K+)-C1- cotransporter family. Biochem Biophys Res Commun 217:150–153 es_ES
dc.description.references Andrés MT, Viejo-Díaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother 52:4081–4088 es_ES
dc.description.references Anemaet IG, van Heusden GP (2014) Transcriptional response of Saccharomyces cerevisiae to potassium starvation. BMC Genomics 15:1040 es_ES
dc.description.references Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74:95–120 es_ES
dc.description.references Babazadeh R, Furukawa T, Hohmann S, Furukawa K (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697 es_ES
dc.description.references Baev D, Rivetta A, Li XS, Vylkova S, Bashi E et al (2003) Killing of Candida albicans by human salivary histatin 5 is modulated, but not determined, by the potassium channel TOK1. Infect Immun 71:3251–3260 es_ES
dc.description.references Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF et al (2004) The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 279:55060–55072 es_ES
dc.description.references Bagriantsev SN, Ang KH, Gallardo-Godoy A, Clark KA, Arkin MR et al (2013) A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem Biol 8:1841–1851 es_ES
dc.description.references Bañuelos MA, Sychrová H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144(Pt 10):2749–2758 es_ES
dc.description.references Bañuelos MA, Ruiz MC, Jiménez A, Souciet JL, Potier S et al (2002) Role of the Nha1 antiporter in regulating K(+) influx in Saccharomyces cerevisiae. Yeast 19:9–15 es_ES
dc.description.references Barnett JA (2008) A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 25:689–731 es_ES
dc.description.references Barreto L, Canadell D, Petrezselyova S, Navarrete C, Maresova L et al (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell 10:1241–1250 es_ES
dc.description.references Barreto L, Canadell D, Valverde-Saubí D, Casamayor A, Ariño J (2012) The short-term response of yeast to potassium starvation. Environ Microbiol 14:3026–3042 es_ES
dc.description.references Benito B, Moreno E, Lagunas R (1991) Half-life of the plasma membrane ATPase and its activating system in resting yeast cells. Biochim Biophys Acta 1063:265–268 es_ES
dc.description.references Benito B, Quintero FJ, Rodríguez-Navarro A (1997) Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi. Biochim Biophys Acta 1328:214–226 es_ES
dc.description.references Benito B, Garciadeblás B, Rodríguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148:933–941 es_ES
dc.description.references Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A (2004) Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3:359–368 es_ES
dc.description.references Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155 es_ES
dc.description.references Bertl A, Slayman CL, Gradmann D (1993) Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. J Membr Biol 132:183–199 es_ES
dc.description.references Bertl A, Bihler H, Reid JD, Kettner C, Slayman CL (1998) Physiological characterization of the yeast plasma membrane outward rectifying K+ channel, DUK1 (TOK1), in situ. J Membr Biol 162:67–80 es_ES
dc.description.references Bertl A, Ramos J, Ludwig J, Lichtenberg-Fraté H, Reid J et al (2003) Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 47:767–780 es_ES
dc.description.references Bihler H, Slayman CL, Bertl A (1998) NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 432:59–64 es_ES
dc.description.references Bihler H, Slayman CL, Bertl A (2002) Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta 1558:109–118 es_ES
dc.description.references Blomberg A (1995) Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl. J Bacteriol 177:3563–3572 es_ES
dc.description.references Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8 es_ES
dc.description.references Borst-Pauwels GW (1981) Ion transport in yeast. Biochim Biophys Acta 650:88–127 es_ES
dc.description.references Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189:695–704 es_ES
dc.description.references Bouillet LE, Cardoso AS, Perovano E, Pereira RR, Ribeiro EM et al (2012) The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 51:72–81 es_ES
dc.description.references Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294 es_ES
dc.description.references Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405 es_ES
dc.description.references Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405 es_ES
dc.description.references Cagnac O, Leterrier M, Yeager M, Blumwald E (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282:24284–24293 es_ES
dc.description.references Cagnac O, Aranda-Sicilia MN, Leterrier M, Rodriguez-Rosales MP, Venema K (2010) Vacuolar cation/H+ antiporters of Saccharomyces cerevisiae. J Biol Chem 285:33914–33922 es_ES
dc.description.references Calahorra M, Lozano C, Sánchez NS, Peña A (2011) Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta 1808:433–445 es_ES
dc.description.references Canadell D, González A, Casado C, Ariño J (2015) Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 95:555–572 es_ES
dc.description.references Casado C, Yenush L, Melero C, del Carmen Ruiz M, Serrano R et al (2010) Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Lett 584:2415–2420 es_ES
dc.description.references Causton HC, Ren B, Koh SS, Harbison CT, Kanin E et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337 es_ES
dc.description.references Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76 es_ES
dc.description.references Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13:342–352 es_ES
dc.description.references Courchesne WE (2002) Characterization of a novel, broad-based fungicidal activity for the antiarrhythmic drug amiodarone. J Pharmacol Exp Ther 300:195–199 es_ES
dc.description.references Courchesne WE, Ozturk S (2003) Amiodarone induces a caffeine-inhibited, MID1-dependent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol Microbiol 47:223–234 es_ES
dc.description.references Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444 es_ES
dc.description.references Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237 es_ES
dc.description.references Curto M, Valledor L, Navarrete C, Gutiérrez D, Sychrova H et al (2010) 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases. J Proteomics 73:2316–2335 es_ES
dc.description.references D’Avanzo N, Cheng WW, Xia X, Dong L, Savitsky P et al (2010) Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. Protein Expr Purif 71:115–121 es_ES
dc.description.references Daran-Lapujade P, Daran JM, Luttik MA, Almering MJ, Pronk JT et al (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9:789–792 es_ES
dc.description.references Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370 es_ES
dc.description.references de Nadal E, Posas F (2011) Elongating under stress. Genet Res Int 2011:326286 es_ES
dc.description.references de Nadal E, Clotet J, Posas F, Serrano R, Gomez N et al (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci U S A 95:7357–7362 es_ES
dc.description.references de Nadal E, Calero F, Ramos J, Ariño J (1999) Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance. J Bacteriol 181:6456–6462 es_ES
dc.description.references de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740 es_ES
dc.description.references De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G et al (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374 es_ES
dc.description.references Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N et al (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853 es_ES
dc.description.references Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J 77:789–807 es_ES
dc.description.references Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M et al (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77 es_ES
dc.description.references Elicharova H, Sychrova H (2014) Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata. Microbiology 160:1705–1713 es_ES
dc.description.references Endele S, Fuhry M, Pak SJ, Zabel BU, Winterpacht A (1999) LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics 60:218–225 es_ES
dc.description.references Eraso P, Mazón MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758:164–170 es_ES
dc.description.references Erez O, Kahana C (2002) Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Deltatrk2Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 295:1142–1149 es_ES
dc.description.references Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W et al (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072 es_ES
dc.description.references Fairman C, Zhou X, Kung C (1999) Potassium uptake through the TOK1 K+ channel in the budding yeast. J Membr Biol 168:149–157 es_ES
dc.description.references Farnaud S, Evans RW (2003) Lactoferrin – a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405 es_ES
dc.description.references Fell GL, Munson AM, Croston MA, Rosenwald AG (2011) Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake. G3 (Bethesda) 1:43–56 es_ES
dc.description.references Fernandes AR, Sá-Correia I (2003) Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Yeast 20:207–219 es_ES
dc.description.references Ferrando A, Kron SJ, Rios G, Fink GR, Serrano R (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cell Biol 15:5470–5481 es_ES
dc.description.references Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614 es_ES
dc.description.references Flegelova H, Haguenauer-Tsapis R, Sychrova H (2006) Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta 1760:504–516 es_ES
dc.description.references Flis K, Hinzpeter A, Edelman A, Kurlandzka A (2005) The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. Biochem J 390:655–664 es_ES
dc.description.references Forment J, Mulet JM, Vicente O, Serrano R (2002) The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochim Biophys Acta 1565:36–40 es_ES
dc.description.references Froschauer E, Nowikovsky K, Schweyen RJ (2005) Electroneutral K+/H+ exchange in mitochondrial membrane vesicles involves Yol027/Letm1 proteins. Biochim Biophys Acta 1711:41–48 es_ES
dc.description.references Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 45:146–159 es_ES
dc.description.references Gaber RF (1992) Molecular genetics of yeast ion transport. Int Rev Cytol 137:299–353 es_ES
dc.description.references Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859 es_ES
dc.description.references Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL et al (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96:1480–1485 es_ES
dc.description.references Gelis S, Curto M, Valledor L, González A, Ariño J et al (2012) Adaptation to potassium starvation of wild-type and K(+)-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach. Microbiologyopen 1:182–193 es_ES
dc.description.references Gómez MJ, Luyten K, Ramos J (1996) The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 135:157–160 es_ES
dc.description.references González A, Casado C, Petrezsélyová S, Ruiz A, Ariño J (2013) Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet Biol 53:1–9 es_ES
dc.description.references Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20:7654–7661 es_ES
dc.description.references Gupta SS, Canessa CM (2000) Heterologous expression of a mammalian epithelial sodium channel in yeast. FEBS Lett 481:77–80 es_ES
dc.description.references Gustin MC, Martinac B, Saimi Y, Culbertson MR, Kung C (1986) Ion channels in yeast. Science 233:1195–1197 es_ES
dc.description.references Haass FA, Jonikas M, Walter P, Weissman JS, Jan YN et al (2007) Identification of yeast proteins necessary for cell-surface function of a potassium channel. Proc Natl Acad Sci U S A 104:18079–18084 es_ES
dc.description.references Haro R, Rodríguez-Navarro A (2002) Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564:114–122 es_ES
dc.description.references Haro R, Rodríguez-Navarro A (2003) Functional analysis of the M2(D) helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613:1–6 es_ES
dc.description.references Haro R, Garciadeblas B, Rodríguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191 es_ES
dc.description.references Hasenbrink G, Schwarzer S, Kolacna L, Ludwig J, Sychrova H et al (2005) Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics. FEBS Lett 579:1723–1731 es_ES
dc.description.references Herrera R, Álvarez MC, Gelis S, Ramos J (2013) Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants. Biochem J 454:525–532 es_ES
dc.description.references Herrera R, Alvarez MC, Gelis S, Kodedová M, Sychrová H et al (2014) Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochim Biophys Acta 1838:127–133 es_ES
dc.description.references Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:e351 es_ES
dc.description.references Hoeberichts FA, Perez-Valle J, Montesinos C, Mulet JM, Planes MD et al (2010) The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast 27:713–725 es_ES
dc.description.references Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372 es_ES
dc.description.references Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45 es_ES
dc.description.references Idnurm A, Walton FJ, Floyd A, Reedy JL, Heitman J (2009) Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot Cell 8:315–326 es_ES
dc.description.references Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS (2012) Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol 49:332–345 es_ES
dc.description.references Kafadar KA, Cyert MS (2004) Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot Cell 3:1147–1153 es_ES
dc.description.references Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L et al (2012) Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 8:e1002548 es_ES
dc.description.references Kallay LM, Brett CL, Tukaye DN, Wemmer MA, Chyou A et al (2011) Endosomal Na+(K+)/H+ exchanger Nhx1/Vps44 functions independently and downstream of multivesicular body formation. J Biol Chem 286:44067–44077 es_ES
dc.description.references Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39:415–421 es_ES
dc.description.references Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123 es_ES
dc.description.references Ke R, Ingram PJ, Haynes K (2013) An integrative model of ion regulation in yeast. PLoS Comput Biol 9:e1002879 es_ES
dc.description.references Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695 es_ES
dc.description.references Kinclová O, Ramos J, Potier S, Sychrová H (2001) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40:656–668 es_ES
dc.description.references Kinclova-Zimmermannova O, Sychrova H (2006) Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity. Curr Genet 49:229–236 es_ES
dc.description.references Kinclová-Zimmermannová O, Flegelová H, Sychrová H (2004) Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters. Folia Microbiol (Praha) 49:519–525 es_ES
dc.description.references Kinclova-Zimmermannova O, Gaskova D, Sychrova H (2006) The Na+, K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res 6:792–800 es_ES
dc.description.references Klee CB, Draetta GF, Hubbard MJ (1988) Calcineurin. Adv Enzymol Relat Areas Mol Biol 61:149–200 es_ES
dc.description.references Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982 es_ES
dc.description.references Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273 es_ES
dc.description.references Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312 es_ES
dc.description.references Ko CH, Liang H, Gaber RF (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol 13:638–648 es_ES
dc.description.references Kojima A, Toshima JY, Kanno C, Kawata C, Toshima J (2012) Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway. Biochim Biophys Acta 1823:534–543 es_ES
dc.description.references Kolb AR, Buck TM, Brodsky JL (2011) Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function? Am J Physiol Renal Physiol 301:F1–F11 es_ES
dc.description.references Kondapalli KC, Hack A, Schushan M, Landau M, Ben-Tal N et al (2013) Functional evaluation of autism-associated mutations in NHE9. Nat Commun 4:2510 es_ES
dc.description.references Kuroda T, Bihler H, Bashi E, Slayman CL, Rivetta A (2004) Chloride channel function in the yeast TRK-potassium transporters. J Membr Biol 198:177–192 es_ES
dc.description.references Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346:71–75 es_ES
dc.description.references Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686 es_ES
dc.description.references Lamb TM, Xu WJ, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850–1856 es_ES
dc.description.references Lapathitis G, Kotyk A (1998) Univalent cation fluxes in yeast. Biochem Mol Biol Int 44:371–380 es_ES
dc.description.references Larsson K, Böhl F, Sjöström I, Akhtar N, Strand D et al (1998) The Saccharomyces cerevisiae SOP1 and SOP2 genes, which act in cation homeostasis, can be functionally substituted by the Drosophila lethal(2)giant larvae tumor suppressor gene. J Biol Chem 273:33610–33618 es_ES
dc.description.references Lauff DB, Santa-María GE (2010) Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae. FEMS Yeast Res 10:497–507 es_ES
dc.description.references Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL et al (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282:35471–35481 es_ES
dc.description.references Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M et al (1996) A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem 271:4183–4187 es_ES
dc.description.references Li J, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics 2:1198–1204 es_ES
dc.description.references Loukin SH, Saimi Y (2002) Carboxyl tail prevents yeast K(+) channel closure: proposal of an integrated model of TOK1 gating. Biophys J 82:781–792 es_ES
dc.description.references Loukin SH, Vaillant B, Zhou XL, Spalding EP, Kung C et al (1997) Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1. EMBO J 16:4817–4825 es_ES
dc.description.references Madrid R, Gómez MJ, Ramos J, Rodríguez-Navarro A (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844 es_ES
dc.description.references Malinsky J, Opekarová M, Grossmann G, Tanner W (2013) Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu Rev Plant Biol 64:501–529 es_ES
dc.description.references Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55:588–600 es_ES
dc.description.references Maresova L, Sychrova H (2006) Arabidopsis thaliana CHX17 gene complements the kha1 deletion phenotypes in Saccharomyces cerevisiae. Yeast 23:1167–1171 es_ES
dc.description.references Marešová L, Sychrová H (2010) Genetic interactions among the Arl1 GTPase and intracellular Na(+) /H(+) antiporters in pH homeostasis and cation detoxification. FEMS Yeast Res 10:802–811 es_ES
dc.description.references Maresova L, Urbankova E, Gaskova D, Sychrova H (2006) Measurements of plasma membrane potential changes in Saccharomyces cerevisiae cells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Res 6:1039–1046 es_ES
dc.description.references Maresova L, Muend S, Zhang YQ, Sychrova H, Rao R (2009) Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem 284:2795–2802 es_ES
dc.description.references Márquez JA, Serrano R (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett 382:89–92 es_ES
dc.description.references Marqués MC, Zamarbide-Forés S, Pedelini L, Llopis-Torregrosa V, Yenush L (2015) A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Res 15(4):fov017 es_ES
dc.description.references Martinac B, Saimi Y, Kung C (2008) Ion channels in microbes. Physiol Rev 88:1449–1490 es_ES
dc.description.references Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638 es_ES
dc.description.references Martínez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319 es_ES
dc.description.references Mason JW (1987) Amiodarone. N Engl J Med 316:455–466 es_ES
dc.description.references Masuda CA, Ramírez J, Peña A, Montero-Lomelí M (2000) Regulation of monovalent ion homeostasis and pH by the Ser-Thr protein phosphatase SIT4 in Saccharomyces cerevisiae. J Biol Chem 275:30957–30961 es_ES
dc.description.references Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM et al (2002) An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277:33075–33080 es_ES
dc.description.references McCusker JH, Perlin DS, Haber JE (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7:4082–4088 es_ES
dc.description.references Melamed D, Pnueli L, Arava Y (2008) Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 14:1337–1351 es_ES
dc.description.references Mendizabal I, Pascual-Ahuir A, Serrano R, de Larrinoa IF (2001) Promoter sequences regulated by the calcineurin-activated transcription factor Crz1 in the yeast ENA1 gene. Mol Genet Genomics 265:801–811 es_ES
dc.description.references Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269:8792–8796 es_ES
dc.description.references Merchan S, Bernal D, Serrano R, Yenush L (2004) Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot Cell 3:100–107 es_ES
dc.description.references Merchan S, Pedelini L, Hueso G, Calzada A, Serrano R et al (2011) Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes Cells 16:152–165 es_ES
dc.description.references Michel B, Lozano C, Rodríguez M, Coria R, Ramírez J et al (2006) The yeast potassium transporter TRK2 is able to substitute for TRK1 in its biological function under low K and low pH conditions. Yeast 23:581–589 es_ES
dc.description.references Minor DL, Masseling SJ, Jan YN, Jan LY (1999) Transmembrane structure of an inwardly rectifying potassium channel. Cell 96:879–891 es_ES
dc.description.references Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C et al (2009) Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans. FEMS Yeast Res 9:278–292 es_ES
dc.description.references Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148 es_ES
dc.description.references Mitsui K, Kamauchi S, Nakamura N, Inoue H, Kanazawa H (2004a) A conserved domain in the tail region of the Saccharomyces cerevisiae Na+/H+ antiporter (Nha1p) plays important roles in localization and salinity-resistant cell-growth. J Biochem 135:139–148 es_ES
dc.description.references Mitsui K, Ochi F, Nakamura N, Doi Y, Inoue H et al (2004b) A novel membrane protein capable of binding the Na+/H+ antiporter (Nha1p) enhances the salinity-resistant cell growth of Saccharomyces cerevisiae. J Biol Chem 279:12438–12447 es_ES
dc.description.references Mitsui K, Yasui H, Nakamura N, Kanazawa H (2005) Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: implications for its antiporter activity. Biochim Biophys Acta 1720:125–136 es_ES
dc.description.references Mitsui K, Koshimura Y, Yoshikawa Y, Matsushita M, Kanazawa H (2011) The endosomal Na(+)/H(+) exchanger contributes to multivesicular body formation by regulating the recruitment of ESCRT-0 Vps27p to the endosomal membrane. J Biol Chem 286:37625–37638 es_ES
dc.description.references Montero-Lomelí M, Okorokova Façanha AL (1999) Expression of a mammalian Na+/H+ antiporter in Saccharomyces cerevisiae. Biochem Cell Biol 77:25–31 es_ES
dc.description.references Montiel V, Ramos J (2007) Intracellular Na and K distribution in Debaryomyces hansenii. Cloning and expression in Saccharomyces cerevisiae of DhNHX1. FEMS Yeast Res 7:102–109 es_ES
dc.description.references Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. Biochim Biophys Acta 1469:133–157 es_ES
dc.description.references Mukherjee S, Kallay L, Brett CL, Rao R (2006) Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem J 398:97–105 es_ES
dc.description.references Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR et al (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 19:3328–3337 es_ES
dc.description.references Mulet JM, Alejandro S, Romero C, Serrano R (2004) The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast. Yeast 21:569–582 es_ES
dc.description.references Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR et al (2004) Yeast ARL1 encodes a regulator of K+ influx. J Cell Sci 117:2309–2320 es_ES
dc.description.references Murguía JR, Bellés JM, Serrano R (1996) The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J Biol Chem 271:29029–29033 es_ES
dc.description.references Nakamura T, Liu Y, Hirata D, Namba H, Harada S et al (1993) Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 12:4063–4071 es_ES
dc.description.references Nakamura RL, Anderson JA, Gaber RF (1997) Determination of key structural requirements of a K+ channel pore. J Biol Chem 272:1011–1018 es_ES
dc.description.references Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273:21054–21060 es_ES
dc.description.references Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145(Pt 11):3221–3228 es_ES
dc.description.references Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance. J Biol Chem 272:26145–26152 es_ES
dc.description.references Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524 es_ES
dc.description.references Navarrete C, Petrezselyova S, Barreto L, Martinez JL, Zahradka J et al (2010) Lack of main K plus uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10:508–517 es_ES
dc.description.references Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases – nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103 es_ES
dc.description.references Norbeck J, Blomberg A (1996) Protein expression during exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae. FEMS Microbiol Lett 137:1–8 es_ES
dc.description.references Norbeck J, Blomberg A (1998) Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium. FEMS Microbiol Lett 158:121–126 es_ES
dc.description.references Norbeck J, Pâhlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881 es_ES
dc.description.references Nowikovsky K, Bernardi P (2014) LETM1 in mitochondrial cation transport. Front Physiol 5:83 es_ES
dc.description.references Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S et al (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279:30307–30315 es_ES
dc.description.references Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656 es_ES
dc.description.references Ohgaki R, Nakamura N, Mitsui K, Kanazawa H (2005) Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochim Biophys Acta 1712:185–196 es_ES
dc.description.references Okorokov LA, Lichko LP, Kulaev IS (1980) Vacuoles: main compartments of potassium, magnesium, and phosphate ions in Saccharomyces carlsbergenis cells. J Bacteriol 144:661–665 es_ES
dc.description.references Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266 es_ES
dc.description.references Pascual-Ahuir A, Posas F, Serrano R, Proft M (2001) Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem 276:37373–37378 es_ES
dc.description.references Peña A, Calahorra M, Michel B, Ramírez J, Sánchez NS (2009) Effects of amiodarone on K+, internal pH and Ca2+ homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 9:832–848 es_ES
dc.description.references Pereira MB, Tisi R, Fietto LG, Cardoso AS, França MM et al (2008) Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:622–630 es_ES
dc.description.references Perez-Valle J, Jenkins H, Merchan S, Montiel V, Ramos J et al (2007) Key role for intracellular K+ and protein kinases Sat4/Hal4 and Ha15 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 27:5725–5736 es_ES
dc.description.references Perez-Valle J, Rothe J, Primo C, Martinez Pastor M, Arino J et al (2010) Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryot Cell 9:1881–1890 es_ES
dc.description.references Perkins J, Gadd GM (1993) Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol Lett 107:255–260 es_ES
dc.description.references Perlin DS, Brown CL, Haber JE (1988) Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263:18118–18122 es_ES
dc.description.references Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A et al (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta 1422:255–272 es_ES
dc.description.references Petrezselyova S, Kinclova-Zimmermannova O, Sychrova H (2013) Vhc1, a novel transporter belonging to the family of electroneutral cation-Cl(−) cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochim Biophys Acta 1828:623–631 es_ES
dc.description.references Platara M, Ruiz A, Serrano R, Palomino A, Moreno F et al (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281:36632–36642 es_ES
dc.description.references Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J et al (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199 es_ES
dc.description.references Portillo F (2000) Regulation of plasma membrane H(+)-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42 es_ES
dc.description.references Portillo F, Mulet JM, Serrano R (2005) A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett 579:512–516 es_ES
dc.description.references Posas F, Camps M, Ariño J (1995) The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem 270:13036–13041 es_ES
dc.description.references Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E et al (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255 es_ES
dc.description.references Pozos TC, Sekler I, Cyert MS (1996) The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. Mol Cell Biol 16:3730–3741 es_ES
dc.description.references Prior C, Potier S, Souciet JL, Sychrova H (1996) Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387:89–93 es_ES
dc.description.references Proft M, Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19:537–546 es_ES
dc.description.references Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317 es_ES
dc.description.references Proft M, Struhl K (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351–361 es_ES
dc.description.references Proft M, Pascual-Ahuir A, de Nadal E, Ariño J, Serrano R et al (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133 es_ES
dc.description.references Qiu QS, Fratti RA (2010) The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 123:3266–3275 es_ES
dc.description.references Quintero FJ, Blatt MR, Pardo JM (2000) Functional conservation between yeast and plant endosomal Na(+)/H(+) antiporters. FEBS Lett 471:224–228 es_ES
dc.description.references Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A 99:9061–9066 es_ES
dc.description.references Ramírez J, Ramírez O, Saldaña C, Coria R, Peña A (1998) A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger. J Bacteriol 180:5860–5865 es_ES
dc.description.references Ramos J, Alijo R, Haro R, Rodriguez-Navarro A (1994) TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol 176:249–252 es_ES
dc.description.references Ramos J, Ariño J, Sychrová H (2011) Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 317:1–8 es_ES
dc.description.references Rao R, Drummond-Barbosa D, Slayman CW (1993) Transcriptional regulation by glucose of the yeast PMA1 gene encoding the plasma membrane H(+)-ATPase. Yeast 9:1075–1084 es_ES
dc.description.references Rauch A, Schellmoser S, Kraus C, Dörr HG, Trautmann U et al (2001) First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet 99:338–342 es_ES
dc.description.references Reid JD, Lukas W, Shafaatian R, Bertl A, Scheurmann-Kettner C et al (1996) The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Recept Channels 4:51–62 es_ES
dc.description.references Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300 es_ES
dc.description.references Rivetta A, Kuroda T, Slayman C (2011) Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflugers Arch 462:315–330 es_ES
dc.description.references Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30 es_ES
dc.description.references Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945 es_ES
dc.description.references Roomans GM, Sevéus LA (1976) Subcellular localization of diffusible ions in the yeast Saccharomyces cerevisiae: quantitative microprobe analysis of thin freeze-dried sections. J Cell Sci 21:119–127 es_ES
dc.description.references Ruiz A, Arino J (2007) Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6:2175–2183 es_ES
dc.description.references Ruiz A, Yenush L, Ariño J (2003) Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway. Eukaryot Cell 2:937–948 es_ES
dc.description.references Saag MS, Dismukes WE (1988) Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 32:1–8 es_ES
dc.description.references Saier MH (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411 es_ES
dc.description.references Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658 es_ES
dc.description.references Schlesser A, Ulaszewski S, Ghislain M, Goffeau A (1988) A second transport ATPase gene in Saccharomyces cerevisiae. J Biol Chem 263:19480–19487 es_ES
dc.description.references Schlickum S, Moghekar A, Simpson JC, Steglich C, O’Brien RJ et al (2004) LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein. Genomics 83:254–261 es_ES
dc.description.references Schwarzer S, Kolacna L, Lichtenberg-Fraté H, Sychrova H, Ludwig J (2008) Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast. FEMS Yeast Res 8:405–413 es_ES
dc.description.references Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM et al (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665 es_ES
dc.description.references Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J (2014) Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 34:4420–4435 es_ES
dc.description.references Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14 es_ES
dc.description.references Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46:1319–1333 es_ES
dc.description.references Sesti F, Shih TM, Nikolaeva N, Goldstein SA (2001) Immunity to K1 killer toxin: internal TOK1 blockade. Cell 105:637–644 es_ES
dc.description.references Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414 es_ES
dc.description.references Simón E, Clotet J, Calero F, Ramos J, Ariño J (2001) A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J Biol Chem 276:29740–29747 es_ES
dc.description.references Simón E, Barceló A, Ariño J (2003) Mutagenesis analysis of the yeast Nha1 Na+/H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle. FEBS Lett 545:239–245 es_ES
dc.description.references Skou JC, Esmann M (1992) The Na, K-ATPase. J Bioenerg Biomembr 24:249–261 es_ES
dc.description.references Soufi B, Kelstrup CD, Stoehr G, Fröhlich F, Walther TC et al (2009) Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol Biosyst 5:1337–1346 es_ES
dc.description.references Stefan CP, Zhang N, Sokabe T, Rivetta A, Slayman CL et al (2013) Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot Cell 12:204–214 es_ES
dc.description.references Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2001) Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 155:899–910 es_ES
dc.description.references Supply P, Wach A, Goffeau A (1993) Enzymatic properties of the PMA2 plasma membrane-bound H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 268:19753–19759 es_ES
dc.description.references Sychrová H, Ramírez J, Peña A (1999) Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171:167–172 es_ES
dc.description.references Szopinska A, Morsomme P (2010) Quantitative proteomic approaches and their application in the study of yeast stress responses. OMICS 14:639–649 es_ES
dc.description.references Szopinska A, Degand H, Hochstenbach JF, Nader J, Morsomme P (2011) Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteomics 10:M111.009589 es_ES
dc.description.references Tang W, Ruknudin A, Yang WP, Shaw SY, Knickerbocker A et al (1995) Functional expression of a vertebrate inwardly rectifying K+ channel in yeast. Mol Biol Cell 6:1231–1240 es_ES
dc.description.references Tarsio M, Zheng H, Smardon AM, Martínez-Muñoz GA, Kane PM (2011) Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis. J Biol Chem 286:28089–28096 es_ES
dc.description.references Tate JJ, Cooper TG (2007) Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J Biol Chem 282:18467–18480 es_ES
dc.description.references Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci U S A 98:5625–5630 es_ES
dc.description.references Trópia MJ, Cardoso AS, Tisi R, Fietto LG, Fietto JL et al (2006) Calcium signaling and sugar-induced activation of plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 343:1234–1243 es_ES
dc.description.references Tsai H, Bobek LA (1997a) Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta 1336:367–369 es_ES
dc.description.references Tsai H, Bobek LA (1997b) Studies of the mechanism of human salivary histatin-5 candidacidal activity with histatin-5 variants and azole-sensitive and -resistant Candida species. Antimicrob Agents Chemother 41:2224–2228 es_ES
dc.description.references Uozumi N, Gassmann W, Cao Y, Schroeder JI (1995) Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J Biol Chem 270:24276–24281 es_ES
dc.description.references Vargas RC, García-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR et al (2007) Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryot Cell 6:134–142 es_ES
dc.description.references Vergani P, Miosga T, Jarvis SM, Blatt MR (1997) Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1. FEBS Lett 405:337–344 es_ES
dc.description.references Viejo-Díaz M, Andrés MT, Fierro JF (2004a) Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. FEMS Immunol Med Microbiol 42:181–185 es_ES
dc.description.references Viejo-Díaz M, Andrés MT, Fierro JF (2004b) Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother 48:1242–1248 es_ES
dc.description.references Wadskog I, Forsmark A, Rossi G, Konopka C, Oyen M et al (2006) The yeast tumor suppressor homologue Sro7p is required for targeting of the sodium pumping ATPase to the cell surface. Mol Biol Cell 17:4988–5003 es_ES
dc.description.references Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH et al (2013) Structural basis for alternating access of a eukaryotic calcium/proton exchanger. Nature 499:107–110 es_ES
dc.description.references Warringer J, Ericson E, Fernandez L, Nerman O, Blomberg A (2003) High-resolution yeast phenomics resolves different physiological features in the saline response. Proc Natl Acad Sci U S A 100:15724–15729 es_ES
dc.description.references Wells KM, Rao R (2001) The yeast Na+/H+ exchanger Nhx1 is an N-linked glycoprotein. Topological implications. J Biol Chem 276:3401–3407 es_ES
dc.description.references Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK (1995) The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J 14:3870–3882 es_ES
dc.description.references Williams-Hart T, Wu X, Tatchell K (2002) Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae. Genetics 160:1423–1437 es_ES
dc.description.references Wolfe DM, Pearce DA (2006) Channeling studies in yeast: yeast as a model for channelopathies? Neuromolecular Med 8:279–306 es_ES
dc.description.references Wright MB, Ramos J, Gomez MJ, Moulder K, Scherrer M et al (1997) Potassium transport by amino acid permeases in Saccharomyces cerevisiae. J Biol Chem 272:13647–13652 es_ES
dc.description.references Xiang M, Feng M, Muend S, Rao R (2007) A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A 104:18677–18681 es_ES
dc.description.references Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007 es_ES
dc.description.references Ye T, Elbing K, Hohmann S (2008) The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154:2814–2826 es_ES
dc.description.references Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21:920–929 es_ES
dc.description.references Yenush L, Merchan S, Holmes J, Serrano R (2005) pH-responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol 25:8683–8692 es_ES
dc.description.references Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386 es_ES
dc.description.references Yu D, Danku JM, Baxter I, Kim S, Vatamaniuk OK et al (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623 es_ES
dc.description.references Zahrádka J, van Heusden GP, Sychrová H (2012) Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim Biophys Acta 1820:849–858 es_ES
dc.description.references Zaks-Makhina E, Kim Y, Aizenman E, Levitan ES (2004) Novel neuroprotective K+ channel inhibitor identified by high-throughput screening in yeast. Mol Pharmacol 65:214–219 es_ES
dc.description.references Zaks-Makhina E, Li H, Grishin A, Salvador-Recatala V, Levitan ES (2009) Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid. J Biol Chem 284:15432–15438 es_ES
dc.description.references Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995 es_ES
dc.description.references Zhou XL, Vaillant B, Loukin SH, Kung C, Saimi Y (1995) YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett 373:170–176 es_ES
dc.description.references Zotova L, Aleschko M, Sponder G, Baumgartner R, Reipert S et al (2010) Novel components of an active mitochondrial K(+)/H(+) exchange. J Biol Chem 285:14399–14414 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem