- -

Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Singh, S. es_ES
dc.contributor.author Hueso Pagoaga, José Luís es_ES
dc.contributor.author Gupta, D.K. es_ES
dc.date.accessioned 2017-07-12T08:53:54Z
dc.date.available 2017-07-12T08:53:54Z
dc.date.issued 2016-04-30
dc.identifier.issn 0096-3003
dc.identifier.uri http://hdl.handle.net/10251/84992
dc.description.abstract In this work we introduce a new form of setting the general assumptions for the local convergence studies of iterative methods in Banach spaces that allows us to improve the convergence domains. Specifically a local convergence result for a family of higher order iterative methods for solving nonlinear equations in Banach spaces is established under the assumption that the Frechet derivative satisfies the Lipschitz continuity condition. For some values of the parameter, these iterative methods are of fifth order. The importance of our work is that it avoids the usual practice of boundedness conditions of higher order derivatives which is a drawback for solving some practical problems. The existence and uniqueness theorem that establishes the convergence balls of these methods is obtained. We have considered a number of numerical examples including a nonlinear Hammerstein equation and computed the radii of the convergence balls. It is found that the radius of convergence ball obtained by our approach is much larger when compared with some other existing methods. The global convergence properties of the family are explored by analyzing the dynamics of the corresponding operator on complex quadratic polynomials. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Local convergence es_ES
dc.subject Banach space es_ES
dc.subject Hammerstein integral equation es_ES
dc.subject Lipschitz condition es_ES
dc.subject Complex dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2016.01.036
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Martínez Molada, E.; Singh, S.; Hueso Pagoaga, JL.; Gupta, D. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation. 281:252-265. doi:10.1016/j.amc.2016.01.036 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.amc.2016.01.036 es_ES
dc.description.upvformatpinicio 252 es_ES
dc.description.upvformatpfin 265 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 281 es_ES
dc.relation.senia 327216 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem