Mostrar el registro sencillo del ítem
dc.contributor.author | do Nascimento, Eduardo | es_ES |
dc.contributor.author | Ramos, Airton | es_ES |
dc.contributor.author | Windmoller, Dario | es_ES |
dc.contributor.author | Reig Rodrigo, Pau | es_ES |
dc.contributor.author | Teruel Juanes, Roberto | es_ES |
dc.contributor.author | Ribes Greus, María Desamparados | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.contributor.author | Ferreira Coelho, Luiz Antônio | es_ES |
dc.date.accessioned | 2017-07-13T13:41:36Z | |
dc.date.available | 2017-07-13T13:41:36Z | |
dc.date.issued | 2016-09 | |
dc.identifier.issn | 0957-4522 | |
dc.identifier.uri | http://hdl.handle.net/10251/85105 | |
dc.description.abstract | In this work electrical properties of an epoxy resin (DGEBA/OTBG) reinforced with alumina (10 nm) or zinc oxide (100 nm) were studied. The dielectric breakdown, relative permittivity, conductivity and dielectric loss were measured in five different nanocomposites for each nanoparticle varying temperature whenever possible. An increase of 50 % of the dielectric breakdown at room temperature in nanocomposites reinforced with only 0.4 % of as-received alumina nanoparticles was obtained. Aiming to understand a relation between state of dispersion of nanofillers and some properties a filler dispersion index Nearest Neighbor Distance was calculated based on FIB/FESEM images of the nanocomposites. This index is related to the dispersion of breakdown probability data and to the best of our knowledge it is not discussed in any other work in the literature. Dielectric spectra provided evidences of the decrease of mobility of charge carriers in lower filler loading nanocomposites due to trapping of charge carriers at the interphase. The percolation threshold of the interphase was reached at higher filler loading nanocomposites than 6 % phr, where the charge carriers have more mobility leading to paths of conductivity. These results corroborates with the drop observed in the dielectric breakdown for percolated nanocomposites. Another important issue found in this work, is that there was no change in the free-volume of the nanocomposites compared to neat epoxy. It is possible to state that in our system free-volume can not explain the variation on dielectric behavior as pointed out in the literature. | es_ES |
dc.description.sponsorship | The financial support of activities by WEG, CAPES, CNPq and ITM are greatly appreciated. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Materials Science: Materials in Electronics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10854-016-4962-y | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Do Nascimento, E.; Ramos, A.; Windmoller, D.; Reig Rodrigo, P.; Teruel Juanes, R.; Ribes Greus, MD.; Amigó Borrás, V.... (2016). Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides. Journal of Materials Science: Materials in Electronics. 27(9):9240-9254. doi:10.1007/s10854-016-4962-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10854-016-4962-y | es_ES |
dc.description.upvformatpinicio | 9240 | es_ES |
dc.description.upvformatpfin | 9254 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 326372 | es_ES |
dc.identifier.eissn | 1573-482X | |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Instituto Tecnológico Metropolitano, Colombia | |
dc.description.references | J.K Nelson, J.C. Fothergill, L.A. Dissado, W. Peasgood, Towards an understanding of nanometric dielectrics. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 295–298 (2002). doi: 10.1109/CEIDP.2002.1048793 | es_ES |
dc.description.references | J.K. Nelson, Y. Hu, J. Thiticharoenpong, Electrical properties of TiO-2 nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 719–722 (2003) | es_ES |
dc.description.references | S. Raetzke, Y. Ohki, T. Imai, T. Tanaka, J. Kindersberger, Tree initiation characteristics of epoxy resin and epoxy/clay nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 16, 1473–1480 (2009) | es_ES |
dc.description.references | J. Wu, T. Izuka, K. Monden, T. Tanaka, Characteristics of initial trees of 30 to 60 μm length in epoxy/silica nanocomposite. IEEETrans. Dielectr. Electr. Insul. 19, 312–320 (2012) | es_ES |
dc.description.references | S. Alapati, M.J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 697–704 (2012) | es_ES |
dc.description.references | Y. Chen, T. Imai, Y. Ohki, T. Tanaka, Tree initiation phenomena in nanostrutured epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 17, 1509–1515 (2010) | es_ES |
dc.description.references | Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 18, 675–681 (2011) | es_ES |
dc.description.references | S. Li, G. Yin, G. Chen, J. Li, S. Bai, L. Zhong, Y. Zhang, Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: A review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010) | es_ES |
dc.description.references | M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Candidate mechanism controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 22, 3789–3799 (2007) | es_ES |
dc.description.references | R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 187–196 (2008) | es_ES |
dc.description.references | L.S. Schadler, J.K. Nelson, C. Calebrese, A. Travelpiece, D.L. Schweickart, High temperature breakdown strength and voltage endurance characteristics of nanofilled polyamideimide. IEEE Trans. Dielectr. Electr. Insul. 19, 2090–2101 (2012) | es_ES |
dc.description.references | Z. Wang, T. Izuka, M. Kozako, Y. Ohki, T. Tanaka, Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength: part II breakdown strength. IEEE Trans. Dielectr. Electr. Insul. 18, 1973–1983 (2011) | es_ES |
dc.description.references | G. Iyer, R.S. Gorur, R. Richert, A. Krivda, L.E. Schmidt, Dielectric properties of epoxy based nanocomposites for high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 659–666 (2011) | es_ES |
dc.description.references | G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a nanodielectric cryogenic resin. Appl. Phys. Lett. 96, 152903 (2010) | es_ES |
dc.description.references | S. Singha, M.J. Thomas, Influence of filler loading on dielectric properties of epoxy ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16, 531–542 (2009) | es_ES |
dc.description.references | P. Preetha, M.J. Thomas, AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18, 1526–1534 (2011) | es_ES |
dc.description.references | G. Polizos, E. Tuncer, I. Sauers, K.L. More, Physical properties of epoxy resin/titanium dioxide nanocomposites. Polym. Eng. Sci. 51, 87–93 (2011) | es_ES |
dc.description.references | J.J. Artbauer, Eletrical strength of polymers. J Phys. D: Appl. Phys. 29, 446–456 (1996) | es_ES |
dc.description.references | J.K. Nelson, L.A. Utracki, R.K. MacCrone, C.W. Reed, Role of the interface in determining the dielectric properties of nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielect. Phenom. 314–317 (2004). doi: 10.1109/CEIDP.2004.1364251 | es_ES |
dc.description.references | J.K. Nelson, Y.J. Hu, Nanocomposites dielectrics-properties and implications. J. Phys. D Appl. Phys. 38, 213–222 (2005) | es_ES |
dc.description.references | L.A. Utracki, Free volume of molten and glassy polystyrene and its nanocomposites. J. Polym. Sci. B: Polym. Phys. 46, 2504–2518 (2008) | es_ES |
dc.description.references | J. Asaad, E. Gomaa, I.K. Bishay, Free-volume properties of epoxy composites and its relation to macrostruture properties. Mater. Sci. Eng., A 490, 151–156 (2008) | es_ES |
dc.description.references | M.G. Veena, N.M. Renukappa, J.M. Raj, C. Ranganathaiah, K.N. Shivakumar, Characterization of nanosilica-filled epoxy composites for electrical and insulation applications. J. Appl. Polym. Sci. 121, 2752–2760 (2011) | es_ES |
dc.description.references | P. Winberg, M. Eldrup, N.J. Pedersen, M.A. van Es, F.H.J. Maurer, Free volume sizes in intercalated polyamide 6/clay nanocomposites. Polymer 46, 8239–8249 (2005) | es_ES |
dc.description.references | P. Winberg, M. Eldrup, F.H.J. Maurer, Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45, 8253–8264 (2004) | es_ES |
dc.description.references | H.M. Chen, Y.C. Jean, L.J. Lee, J. Yang, J. Huang, Positron annihilation study in inorganic-polymer nanocomposites. Phys. Status Solidi C 6, 2397–2400 (2009) | es_ES |
dc.description.references | G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 17, 132–140 (2012) | es_ES |
dc.description.references | S. Harms, K. Ratzke, F. Faupel, G.J. Schneider, L. Willner, D. Richter, Free volume of interphase in model nanocomposites studies by positron annihilation lifetime spectroscopy. Macromol 43, 10505–10511 (2010) | es_ES |
dc.description.references | K. Nusser, S. Neueder, G.J. Schneider, M. Meyer, W.P. Hintzen, L. Willner, A. Radulescu, D. Richter, Confirmations of silica/poly(ethylene-propylene) nanocomposites. Macromol 43, 9837–9847 (2010) | es_ES |
dc.description.references | G. Dublek, U. De, J. Pionteck, N.Y. Arutyunov, M. Edelmann, R.K. Rehberg, Temperature dependence of free volume in pure and silica-filled in poly(dimethyl siloxane) from positron lifetime and PVT experiments. Macromol. Chem. Phys. 206, 827–840 (2005) | es_ES |
dc.description.references | Q. Wang, G. Chen, Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv. Mater. Res. 1, 93–107 (2012) | es_ES |
dc.description.references | G. Ioannou, A. Patsidis, G.C. Psarras, Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos. A 42, 104–110 (2011) | es_ES |
dc.description.references | D.N. McCarthy, H. Stoyanov, D. Rychkov, H. Ragusch, M. Melzer, G. Kofod, Increased permittivity nanocomposite dielectric by controlled interfacial interactions. Comp. Sci. Technol. 72, 731–736 (2012) | es_ES |
dc.description.references | P. Preetha, M.J. Thomas, R. Ranjan, Electrothermal ageing of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 2081–2089 (2012) | es_ES |
dc.description.references | G. Polizos, E. Tuncer, A.L. Agapov, D. Stevens, A.P. Sokolov, M.K. Kidder, J.D. Jacobs, H. Koerner, R.A. Vaia, K.L. More, I. Sauers, Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer 53, 595–603 (2012) | es_ES |
dc.description.references | J.I. Hong, L.S. Schadler, R.W. Siegel, E. Martensson, Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles. J. Mater. Sci. 41, 5810–5814 (2006) | es_ES |
dc.description.references | F. Tian, Q. Lei, X. Wang, Y. Wang, Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 19, 763–769 (2012) | es_ES |
dc.description.references | H. Couderc, M. Fréchette, S. Savoie, M. Reading, A.S. Vaughan, Dielectric and thermal properties of boron nitride and silica epoxy composites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 64–68 (2012). doi: 10.1109/ELINSL.2012.6251427 | es_ES |
dc.description.references | C. Zhang, G.C. Stevens, The dielectric response of polar and non-polar nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 606–617 (2008) | es_ES |
dc.description.references | W.T. Wan, D.M. Yu, L.B. Huang, Y.C. Xie, X.S. Guo, J. Zhang, Size effect of Al2O3 nanowires on the molecular relaxation in epoxy composites. Macromol. Chem. Phys. 209, 1056–1064 (2008) | es_ES |
dc.description.references | P. Maity, S. Basu, V. Parameswaran, N. Gupta, On the size dielectric properties of the interphase in epoxy-alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 1665–1675 (2010) | es_ES |
dc.description.references | D. Tan, Y. Cao, E. Tuncer, P. Irwin, Nanofiller dispersion in polymer dielectrics. Mater. Sci. Appl. 4, 6–15 (2013) | es_ES |
dc.description.references | M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei, N. Hayakawa, Dielectric properties of epoxy/alumina nanocomposites influenced by control of micrometric agglomerates. IEEE Trans. Dielectr. Electr. Insul. 17, 662–670 (2010) | es_ES |
dc.description.references | C. Calebrese, L. Hui, L.S. Schadler, J.K. Nelson, A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 938–945 (2011) | es_ES |
dc.description.references | L. Hui, R.C. Smith, X. Wang, J.K. Nelson, L.S. Schadler, Quantification of particulate mixing in nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 317–320 | es_ES |
dc.description.references | T.J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004) | es_ES |
dc.description.references | G. Tsagaropoulos, A. Eisenberg, Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymer: similarities and differences with random ionomers. Macromol. 28, 6067–6077 (1995) | es_ES |
dc.description.references | T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposites dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005) | es_ES |
dc.description.references | S. Raetzke, J. Kindersberger, Resistance to high voltage arcing and the resistance to tracking and erosion for silicone/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 607–614 (2010) | es_ES |
dc.description.references | T. Andritsch, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. Proc. Int. Conf. Solid Dielectr. 1–4 (2010). doi: 10.1109/ICSD.2010.5568012 | es_ES |
dc.description.references | S. Li, G. Yin, S. Bai, J. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011) | es_ES |
dc.description.references | C. Zou, J.C. Fothergill, S.W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15, 106–117 (2008) | es_ES |
dc.description.references | C. Zhang, G.C. Stevens, The dielectric behaviour of the interface in polymer nanocomposites. Proc. Int. Conf. Solid Dielectr | es_ES |
dc.description.references | R.R. Patel, N. Gupta, Effect of humidity on the complex permittivity of epoxy-based nanodielectrics with metal oxide fillers. Int Trans Electr Energy Syst (2012). doi: 10.1002/etep.1663 | es_ES |
dc.description.references | L. Hui, L.S. Schadler, J.K. Nelson, Influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 641–653 (2013) | es_ES |
dc.description.references | P.J. Clark, F.C. Evans, Distance to nearest neighbor as a measureof spatial relantionships in populations. Ecology 35, 445–453 (1954) | es_ES |
dc.description.references | S.J. Tao, Positronium annihilation in molecular substances. J. Chem. Phys. 56, 5499–5510 (1972) | es_ES |
dc.description.references | M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic. J. Chem. Phys. 63, 51–58 (1981) | es_ES |
dc.description.references | Y. Wang, H. Nakanishi, Y. Jean, Positron annihilation in amine-cured epoxy polymers-pressure dependence. J. Polym. Sci. B 28, 1431–1441 (1990) | es_ES |
dc.description.references | ATSM D149-09, Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies (2009) | es_ES |
dc.description.references | IEC 60464-2, Varnishes used for electrical insulation: method test (2001) | es_ES |
dc.description.references | J.K. Nelson, J. Dryzek, B.C. Benicewicz, M. Bell, Y. Huang, T.M. Krentz, L.S. Schadler, Free-volume in nanodielectrics. in IEEE Proc. 11th Int. Conf. Prop. Appl. Dielectr. Mater (2015), pp. 40–43. ISBN:978-1-4799-8903-4 | es_ES |
dc.description.references | M.M. Ueki, M. Zanin, Influence of additives on the dielectric strength of high-density polyethylene. IEEE Trans. Dielectr. Electr. Insul. 6, 876–881 (1999) | es_ES |
dc.description.references | I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, The role of particle distribution in the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 1175–1186 (2015) | es_ES |
dc.description.references | Y. Wang, C. Wang, K. Xiao, Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test 50, 145–151 (2016) | es_ES |
dc.description.references | H. Courdec, E. David, M. Fréchette, S. Savoie, Study of dielectric relaxation of epoxy composites containing micro and nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 20, 592–600 (2013) | es_ES |
dc.description.references | I. Preda, J. Castellon, S. Agnel, H. Courdec, M. Fréchette, F. Gao, R. Nigmatullin, S. Thompson, A.F. Vaessen, Dielectric response of various partially cured epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 580–591 (2013) | es_ES |
dc.description.references | R. Quia, C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69, 491–499 (2008) | es_ES |
dc.description.references | I.A. Tsekmes, P.H.F. Morshuis, J.J. Smit, R. Kochetov, The influence of interfaces and water uptake on the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 3929–3941 (2015) | es_ES |
dc.description.references | L.A. Dissado, R.M. Hill, Anomalous low frequency dispersion: a near DC conductivity in disordered low dimensional materials. J. Chem. Soc. Faraday Trans. 80, 291–319 (1984) | es_ES |
dc.description.references | E. Schlosser, A. Schonhals, Dielectric relaxation in polymeric solids part I: a new interpretation of the shape of the dielectric relaxation function. J. Coll. Polym. Sci. 267, 963–969 (1989) | es_ES |
dc.description.references | O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposites films. J. Mater. Sci.: Mater. Electron. 27, 3591–3598 (2016) | es_ES |
dc.description.references | N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposites films. J. Mater. Sci.: Mater. Electron. 25, 2759–2770 (2014) | es_ES |