- -

Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author do Nascimento, Eduardo es_ES
dc.contributor.author Ramos, Airton es_ES
dc.contributor.author Windmoller, Dario es_ES
dc.contributor.author Reig Rodrigo, Pau es_ES
dc.contributor.author Teruel Juanes, Roberto es_ES
dc.contributor.author Ribes Greus, María Desamparados es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.contributor.author Ferreira Coelho, Luiz Antônio es_ES
dc.date.accessioned 2017-07-13T13:41:36Z
dc.date.available 2017-07-13T13:41:36Z
dc.date.issued 2016-09
dc.identifier.issn 0957-4522
dc.identifier.uri http://hdl.handle.net/10251/85105
dc.description.abstract In this work electrical properties of an epoxy resin (DGEBA/OTBG) reinforced with alumina (10 nm) or zinc oxide (100 nm) were studied. The dielectric breakdown, relative permittivity, conductivity and dielectric loss were measured in five different nanocomposites for each nanoparticle varying temperature whenever possible. An increase of 50 % of the dielectric breakdown at room temperature in nanocomposites reinforced with only 0.4 % of as-received alumina nanoparticles was obtained. Aiming to understand a relation between state of dispersion of nanofillers and some properties a filler dispersion index Nearest Neighbor Distance was calculated based on FIB/FESEM images of the nanocomposites. This index is related to the dispersion of breakdown probability data and to the best of our knowledge it is not discussed in any other work in the literature. Dielectric spectra provided evidences of the decrease of mobility of charge carriers in lower filler loading nanocomposites due to trapping of charge carriers at the interphase. The percolation threshold of the interphase was reached at higher filler loading nanocomposites than 6 % phr, where the charge carriers have more mobility leading to paths of conductivity. These results corroborates with the drop observed in the dielectric breakdown for percolated nanocomposites. Another important issue found in this work, is that there was no change in the free-volume of the nanocomposites compared to neat epoxy. It is possible to state that in our system free-volume can not explain the variation on dielectric behavior as pointed out in the literature. es_ES
dc.description.sponsorship The financial support of activities by WEG, CAPES, CNPq and ITM are greatly appreciated. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Science: Materials in Electronics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10854-016-4962-y
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Do Nascimento, E.; Ramos, A.; Windmoller, D.; Reig Rodrigo, P.; Teruel Juanes, R.; Ribes Greus, MD.; Amigó Borrás, V.... (2016). Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides. Journal of Materials Science: Materials in Electronics. 27(9):9240-9254. doi:10.1007/s10854-016-4962-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10854-016-4962-y es_ES
dc.description.upvformatpinicio 9240 es_ES
dc.description.upvformatpfin 9254 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 326372 es_ES
dc.identifier.eissn 1573-482X
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Instituto Tecnológico Metropolitano, Colombia
dc.description.references J.K Nelson, J.C. Fothergill, L.A. Dissado, W. Peasgood, Towards an understanding of nanometric dielectrics. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 295–298 (2002). doi: 10.1109/CEIDP.2002.1048793 es_ES
dc.description.references J.K. Nelson, Y. Hu, J. Thiticharoenpong, Electrical properties of TiO-2 nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 719–722 (2003) es_ES
dc.description.references S. Raetzke, Y. Ohki, T. Imai, T. Tanaka, J. Kindersberger, Tree initiation characteristics of epoxy resin and epoxy/clay nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 16, 1473–1480 (2009) es_ES
dc.description.references J. Wu, T. Izuka, K. Monden, T. Tanaka, Characteristics of initial trees of 30 to 60 μm length in epoxy/silica nanocomposite. IEEETrans. Dielectr. Electr. Insul. 19, 312–320 (2012) es_ES
dc.description.references S. Alapati, M.J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 697–704 (2012) es_ES
dc.description.references Y. Chen, T. Imai, Y. Ohki, T. Tanaka, Tree initiation phenomena in nanostrutured epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 17, 1509–1515 (2010) es_ES
dc.description.references Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 18, 675–681 (2011) es_ES
dc.description.references S. Li, G. Yin, G. Chen, J. Li, S. Bai, L. Zhong, Y. Zhang, Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: A review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010) es_ES
dc.description.references M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Candidate mechanism controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 22, 3789–3799 (2007) es_ES
dc.description.references R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 187–196 (2008) es_ES
dc.description.references L.S. Schadler, J.K. Nelson, C. Calebrese, A. Travelpiece, D.L. Schweickart, High temperature breakdown strength and voltage endurance characteristics of nanofilled polyamideimide. IEEE Trans. Dielectr. Electr. Insul. 19, 2090–2101 (2012) es_ES
dc.description.references Z. Wang, T. Izuka, M. Kozako, Y. Ohki, T. Tanaka, Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength: part II breakdown strength. IEEE Trans. Dielectr. Electr. Insul. 18, 1973–1983 (2011) es_ES
dc.description.references G. Iyer, R.S. Gorur, R. Richert, A. Krivda, L.E. Schmidt, Dielectric properties of epoxy based nanocomposites for high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 659–666 (2011) es_ES
dc.description.references G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a nanodielectric cryogenic resin. Appl. Phys. Lett. 96, 152903 (2010) es_ES
dc.description.references S. Singha, M.J. Thomas, Influence of filler loading on dielectric properties of epoxy ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16, 531–542 (2009) es_ES
dc.description.references P. Preetha, M.J. Thomas, AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18, 1526–1534 (2011) es_ES
dc.description.references G. Polizos, E. Tuncer, I. Sauers, K.L. More, Physical properties of epoxy resin/titanium dioxide nanocomposites. Polym. Eng. Sci. 51, 87–93 (2011) es_ES
dc.description.references J.J. Artbauer, Eletrical strength of polymers. J Phys. D: Appl. Phys. 29, 446–456 (1996) es_ES
dc.description.references J.K. Nelson, L.A. Utracki, R.K. MacCrone, C.W. Reed, Role of the interface in determining the dielectric properties of nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielect. Phenom. 314–317 (2004). doi: 10.1109/CEIDP.2004.1364251 es_ES
dc.description.references J.K. Nelson, Y.J. Hu, Nanocomposites dielectrics-properties and implications. J. Phys. D Appl. Phys. 38, 213–222 (2005) es_ES
dc.description.references L.A. Utracki, Free volume of molten and glassy polystyrene and its nanocomposites. J. Polym. Sci. B: Polym. Phys. 46, 2504–2518 (2008) es_ES
dc.description.references J. Asaad, E. Gomaa, I.K. Bishay, Free-volume properties of epoxy composites and its relation to macrostruture properties. Mater. Sci. Eng., A 490, 151–156 (2008) es_ES
dc.description.references M.G. Veena, N.M. Renukappa, J.M. Raj, C. Ranganathaiah, K.N. Shivakumar, Characterization of nanosilica-filled epoxy composites for electrical and insulation applications. J. Appl. Polym. Sci. 121, 2752–2760 (2011) es_ES
dc.description.references P. Winberg, M. Eldrup, N.J. Pedersen, M.A. van Es, F.H.J. Maurer, Free volume sizes in intercalated polyamide 6/clay nanocomposites. Polymer 46, 8239–8249 (2005) es_ES
dc.description.references P. Winberg, M. Eldrup, F.H.J. Maurer, Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45, 8253–8264 (2004) es_ES
dc.description.references H.M. Chen, Y.C. Jean, L.J. Lee, J. Yang, J. Huang, Positron annihilation study in inorganic-polymer nanocomposites. Phys. Status Solidi C 6, 2397–2400 (2009) es_ES
dc.description.references G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 17, 132–140 (2012) es_ES
dc.description.references S. Harms, K. Ratzke, F. Faupel, G.J. Schneider, L. Willner, D. Richter, Free volume of interphase in model nanocomposites studies by positron annihilation lifetime spectroscopy. Macromol 43, 10505–10511 (2010) es_ES
dc.description.references K. Nusser, S. Neueder, G.J. Schneider, M. Meyer, W.P. Hintzen, L. Willner, A. Radulescu, D. Richter, Confirmations of silica/poly(ethylene-propylene) nanocomposites. Macromol 43, 9837–9847 (2010) es_ES
dc.description.references G. Dublek, U. De, J. Pionteck, N.Y. Arutyunov, M. Edelmann, R.K. Rehberg, Temperature dependence of free volume in pure and silica-filled in poly(dimethyl siloxane) from positron lifetime and PVT experiments. Macromol. Chem. Phys. 206, 827–840 (2005) es_ES
dc.description.references Q. Wang, G. Chen, Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv. Mater. Res. 1, 93–107 (2012) es_ES
dc.description.references G. Ioannou, A. Patsidis, G.C. Psarras, Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos. A 42, 104–110 (2011) es_ES
dc.description.references D.N. McCarthy, H. Stoyanov, D. Rychkov, H. Ragusch, M. Melzer, G. Kofod, Increased permittivity nanocomposite dielectric by controlled interfacial interactions. Comp. Sci. Technol. 72, 731–736 (2012) es_ES
dc.description.references P. Preetha, M.J. Thomas, R. Ranjan, Electrothermal ageing of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 2081–2089 (2012) es_ES
dc.description.references G. Polizos, E. Tuncer, A.L. Agapov, D. Stevens, A.P. Sokolov, M.K. Kidder, J.D. Jacobs, H. Koerner, R.A. Vaia, K.L. More, I. Sauers, Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer 53, 595–603 (2012) es_ES
dc.description.references J.I. Hong, L.S. Schadler, R.W. Siegel, E. Martensson, Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles. J. Mater. Sci. 41, 5810–5814 (2006) es_ES
dc.description.references F. Tian, Q. Lei, X. Wang, Y. Wang, Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 19, 763–769 (2012) es_ES
dc.description.references H. Couderc, M. Fréchette, S. Savoie, M. Reading, A.S. Vaughan, Dielectric and thermal properties of boron nitride and silica epoxy composites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 64–68 (2012). doi: 10.1109/ELINSL.2012.6251427 es_ES
dc.description.references C. Zhang, G.C. Stevens, The dielectric response of polar and non-polar nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 606–617 (2008) es_ES
dc.description.references W.T. Wan, D.M. Yu, L.B. Huang, Y.C. Xie, X.S. Guo, J. Zhang, Size effect of Al2O3 nanowires on the molecular relaxation in epoxy composites. Macromol. Chem. Phys. 209, 1056–1064 (2008) es_ES
dc.description.references P. Maity, S. Basu, V. Parameswaran, N. Gupta, On the size dielectric properties of the interphase in epoxy-alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 1665–1675 (2010) es_ES
dc.description.references D. Tan, Y. Cao, E. Tuncer, P. Irwin, Nanofiller dispersion in polymer dielectrics. Mater. Sci. Appl. 4, 6–15 (2013) es_ES
dc.description.references M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei, N. Hayakawa, Dielectric properties of epoxy/alumina nanocomposites influenced by control of micrometric agglomerates. IEEE Trans. Dielectr. Electr. Insul. 17, 662–670 (2010) es_ES
dc.description.references C. Calebrese, L. Hui, L.S. Schadler, J.K. Nelson, A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 938–945 (2011) es_ES
dc.description.references L. Hui, R.C. Smith, X. Wang, J.K. Nelson, L.S. Schadler, Quantification of particulate mixing in nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 317–320 es_ES
dc.description.references T.J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004) es_ES
dc.description.references G. Tsagaropoulos, A. Eisenberg, Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymer: similarities and differences with random ionomers. Macromol. 28, 6067–6077 (1995) es_ES
dc.description.references T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposites dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005) es_ES
dc.description.references S. Raetzke, J. Kindersberger, Resistance to high voltage arcing and the resistance to tracking and erosion for silicone/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 607–614 (2010) es_ES
dc.description.references T. Andritsch, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. Proc. Int. Conf. Solid Dielectr. 1–4 (2010). doi: 10.1109/ICSD.2010.5568012 es_ES
dc.description.references S. Li, G. Yin, S. Bai, J. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011) es_ES
dc.description.references C. Zou, J.C. Fothergill, S.W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15, 106–117 (2008) es_ES
dc.description.references C. Zhang, G.C. Stevens, The dielectric behaviour of the interface in polymer nanocomposites. Proc. Int. Conf. Solid Dielectr es_ES
dc.description.references R.R. Patel, N. Gupta, Effect of humidity on the complex permittivity of epoxy-based nanodielectrics with metal oxide fillers. Int Trans Electr Energy Syst (2012). doi: 10.1002/etep.1663 es_ES
dc.description.references L. Hui, L.S. Schadler, J.K. Nelson, Influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 641–653 (2013) es_ES
dc.description.references P.J. Clark, F.C. Evans, Distance to nearest neighbor as a measureof spatial relantionships in populations. Ecology 35, 445–453 (1954) es_ES
dc.description.references S.J. Tao, Positronium annihilation in molecular substances. J. Chem. Phys. 56, 5499–5510 (1972) es_ES
dc.description.references M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic. J. Chem. Phys. 63, 51–58 (1981) es_ES
dc.description.references Y. Wang, H. Nakanishi, Y. Jean, Positron annihilation in amine-cured epoxy polymers-pressure dependence. J. Polym. Sci. B 28, 1431–1441 (1990) es_ES
dc.description.references ATSM D149-09, Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies (2009) es_ES
dc.description.references IEC 60464-2, Varnishes used for electrical insulation: method test (2001) es_ES
dc.description.references J.K. Nelson, J. Dryzek, B.C. Benicewicz, M. Bell, Y. Huang, T.M. Krentz, L.S. Schadler, Free-volume in nanodielectrics. in IEEE Proc. 11th Int. Conf. Prop. Appl. Dielectr. Mater (2015), pp. 40–43. ISBN:978-1-4799-8903-4 es_ES
dc.description.references M.M. Ueki, M. Zanin, Influence of additives on the dielectric strength of high-density polyethylene. IEEE Trans. Dielectr. Electr. Insul. 6, 876–881 (1999) es_ES
dc.description.references I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, The role of particle distribution in the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 1175–1186 (2015) es_ES
dc.description.references Y. Wang, C. Wang, K. Xiao, Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test 50, 145–151 (2016) es_ES
dc.description.references H. Courdec, E. David, M. Fréchette, S. Savoie, Study of dielectric relaxation of epoxy composites containing micro and nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 20, 592–600 (2013) es_ES
dc.description.references I. Preda, J. Castellon, S. Agnel, H. Courdec, M. Fréchette, F. Gao, R. Nigmatullin, S. Thompson, A.F. Vaessen, Dielectric response of various partially cured epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 580–591 (2013) es_ES
dc.description.references R. Quia, C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69, 491–499 (2008) es_ES
dc.description.references I.A. Tsekmes, P.H.F. Morshuis, J.J. Smit, R. Kochetov, The influence of interfaces and water uptake on the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 3929–3941 (2015) es_ES
dc.description.references L.A. Dissado, R.M. Hill, Anomalous low frequency dispersion: a near DC conductivity in disordered low dimensional materials. J. Chem. Soc. Faraday Trans. 80, 291–319 (1984) es_ES
dc.description.references E. Schlosser, A. Schonhals, Dielectric relaxation in polymeric solids part I: a new interpretation of the shape of the dielectric relaxation function. J. Coll. Polym. Sci. 267, 963–969 (1989) es_ES
dc.description.references O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposites films. J. Mater. Sci.: Mater. Electron. 27, 3591–3598 (2016) es_ES
dc.description.references N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposites films. J. Mater. Sci.: Mater. Electron. 25, 2759–2770 (2014) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem