- -

One step electrodeposition of Ag-decorated ZnO nanowires

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One step electrodeposition of Ag-decorated ZnO nanowires

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Slimi, B. es_ES
dc.contributor.author Ben Assaker, I. es_ES
dc.contributor.author Kriaa, A. es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Chtourou, R. es_ES
dc.date.accessioned 2017-07-13T14:44:54Z
dc.date.available 2017-07-13T14:44:54Z
dc.date.issued 2017-05
dc.identifier.issn 1432-8488
dc.identifier.uri http://hdl.handle.net/10251/85108
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3476-0. es_ES
dc.description.abstract A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface. es_ES
dc.description.sponsorship B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Solid State Electrochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ag-decorated ZnO es_ES
dc.subject ZnO nanowires es_ES
dc.subject Electrodeposition technique es_ES
dc.subject Photoelectrochemical characterization es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title One step electrodeposition of Ag-decorated ZnO nanowires es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10008-016-3476-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2014%2F044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Slimi, B.; Ben Assaker, I.; Kriaa, A.; Marí, B.; Chtourou, R. (2017). One step electrodeposition of Ag-decorated ZnO nanowires. Journal of Solid State Electrochemistry. 21(5):1253-1261. https://doi.org/10.1007/s10008-016-3476-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10008-016-3476-0 es_ES
dc.description.upvformatpinicio 1253 es_ES
dc.description.upvformatpfin 1261 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 335952 es_ES
dc.identifier.eissn 1433-0768
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centre de Recherches et des Technologies de l'Energie
dc.description.references Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551 es_ES
dc.description.references Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111 es_ES
dc.description.references Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813 es_ES
dc.description.references Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252 es_ES
dc.description.references Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116 es_ES
dc.description.references Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105 es_ES
dc.description.references Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530 es_ES
dc.description.references Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391 es_ES
dc.description.references Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21 es_ES
dc.description.references Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27 es_ES
dc.description.references Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297 es_ES
dc.description.references Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685 es_ES
dc.description.references Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631 es_ES
dc.description.references Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193 es_ES
dc.description.references Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504 es_ES
dc.description.references Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871 es_ES
dc.description.references Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516 es_ES
dc.description.references Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489 es_ES
dc.description.references Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506 es_ES
dc.description.references Xie J, Wu Q (2010) Mater Lett 64:389–392 es_ES
dc.description.references Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616 es_ES
dc.description.references Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25 es_ES
dc.description.references Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485 es_ES
dc.description.references Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150 es_ES
dc.description.references Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155 es_ES
dc.description.references Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673 es_ES
dc.description.references Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248 es_ES
dc.description.references Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202 es_ES
dc.description.references Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557 es_ES
dc.description.references Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145 es_ES
dc.description.references Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New York es_ES
dc.description.references Pauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880 es_ES
dc.description.references Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Sensors Actuators B 223:893–903 es_ES
dc.description.references Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664 es_ES
dc.description.references Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152 es_ES
dc.description.references Song J, Lim S (2007) J Phys Chem C 111:596–600 es_ES
dc.description.references Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613 es_ES
dc.description.references Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453 es_ES
dc.description.references Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249 es_ES
dc.description.references Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108 es_ES
dc.description.references Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689 es_ES
dc.description.references Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165 es_ES
dc.description.references Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435 es_ES
dc.description.references Su L, Qin N (2015) Ceram Int 41:2673–2679 es_ES
dc.description.references Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193 es_ES
dc.description.references Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637 es_ES
dc.description.references Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411N es_ES
dc.description.references Zhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015 es_ES
dc.description.references Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387 es_ES
dc.description.references Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224 es_ES
dc.description.references Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263 es_ES
dc.description.references Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173 es_ES
dc.description.references Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721 es_ES
dc.description.references Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190 es_ES
dc.description.references Manjón FJ, Mollar M, Hernández-Fenollosa MA, Marí B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39 es_ES
dc.description.references Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403 es_ES
dc.description.references Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–262 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem