Mostrar el registro sencillo del ítem
dc.contributor.author | Slimi, B. | es_ES |
dc.contributor.author | Ben Assaker, I. | es_ES |
dc.contributor.author | Kriaa, A. | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | Chtourou, R. | es_ES |
dc.date.accessioned | 2017-07-13T14:44:54Z | |
dc.date.available | 2017-07-13T14:44:54Z | |
dc.date.issued | 2017-05 | |
dc.identifier.issn | 1432-8488 | |
dc.identifier.uri | http://hdl.handle.net/10251/85108 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3476-0. | es_ES |
dc.description.abstract | A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface. | es_ES |
dc.description.sponsorship | B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Solid State Electrochemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ag-decorated ZnO | es_ES |
dc.subject | ZnO nanowires | es_ES |
dc.subject | Electrodeposition technique | es_ES |
dc.subject | Photoelectrochemical characterization | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | One step electrodeposition of Ag-decorated ZnO nanowires | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10008-016-3476-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2013-46624-C4-4-R/ES/MEJORA DE LA CONVERSION DE ENERGIA SOLAR MEDIANTE PROCESOS DE EXCITACION ELECTRONICA EN DOS ETAPAS. APROXIMACION ELECTROQUIMICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2014%2F044/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Slimi, B.; Ben Assaker, I.; Kriaa, A.; Marí, B.; Chtourou, R. (2017). One step electrodeposition of Ag-decorated ZnO nanowires. Journal of Solid State Electrochemistry. 21(5):1253-1261. https://doi.org/10.1007/s10008-016-3476-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10008-016-3476-0 | es_ES |
dc.description.upvformatpinicio | 1253 | es_ES |
dc.description.upvformatpfin | 1261 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 335952 | es_ES |
dc.identifier.eissn | 1433-0768 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Centre de Recherches et des Technologies de l'Energie | |
dc.description.references | Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551 | es_ES |
dc.description.references | Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111 | es_ES |
dc.description.references | Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813 | es_ES |
dc.description.references | Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252 | es_ES |
dc.description.references | Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116 | es_ES |
dc.description.references | Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105 | es_ES |
dc.description.references | Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530 | es_ES |
dc.description.references | Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391 | es_ES |
dc.description.references | Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21 | es_ES |
dc.description.references | Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27 | es_ES |
dc.description.references | Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297 | es_ES |
dc.description.references | Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685 | es_ES |
dc.description.references | Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631 | es_ES |
dc.description.references | Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193 | es_ES |
dc.description.references | Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504 | es_ES |
dc.description.references | Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871 | es_ES |
dc.description.references | Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516 | es_ES |
dc.description.references | Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489 | es_ES |
dc.description.references | Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506 | es_ES |
dc.description.references | Xie J, Wu Q (2010) Mater Lett 64:389–392 | es_ES |
dc.description.references | Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616 | es_ES |
dc.description.references | Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25 | es_ES |
dc.description.references | Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485 | es_ES |
dc.description.references | Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150 | es_ES |
dc.description.references | Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155 | es_ES |
dc.description.references | Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673 | es_ES |
dc.description.references | Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248 | es_ES |
dc.description.references | Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202 | es_ES |
dc.description.references | Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557 | es_ES |
dc.description.references | Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145 | es_ES |
dc.description.references | Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New York | es_ES |
dc.description.references | Pauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880 | es_ES |
dc.description.references | Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Sensors Actuators B 223:893–903 | es_ES |
dc.description.references | Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664 | es_ES |
dc.description.references | Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152 | es_ES |
dc.description.references | Song J, Lim S (2007) J Phys Chem C 111:596–600 | es_ES |
dc.description.references | Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613 | es_ES |
dc.description.references | Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453 | es_ES |
dc.description.references | Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249 | es_ES |
dc.description.references | Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108 | es_ES |
dc.description.references | Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689 | es_ES |
dc.description.references | Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165 | es_ES |
dc.description.references | Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435 | es_ES |
dc.description.references | Su L, Qin N (2015) Ceram Int 41:2673–2679 | es_ES |
dc.description.references | Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193 | es_ES |
dc.description.references | Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637 | es_ES |
dc.description.references | Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411N | es_ES |
dc.description.references | Zhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015 | es_ES |
dc.description.references | Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387 | es_ES |
dc.description.references | Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224 | es_ES |
dc.description.references | Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263 | es_ES |
dc.description.references | Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173 | es_ES |
dc.description.references | Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721 | es_ES |
dc.description.references | Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190 | es_ES |
dc.description.references | Manjón FJ, Mollar M, Hernández-Fenollosa MA, Marí B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39 | es_ES |
dc.description.references | Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403 | es_ES |
dc.description.references | Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–262 | es_ES |