- -

Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rakusova, Hana es_ES
dc.contributor.author Gallego Bartolomé, Javier es_ES
dc.contributor.author Vanstraelen, M. es_ES
dc.contributor.author Robert, H.S es_ES
dc.contributor.author Alabadí Diego, David es_ES
dc.contributor.author Blazquez Rodriguez, Miguel Angel es_ES
dc.contributor.author Benková, Eva es_ES
dc.contributor.author Friml, J es_ES
dc.date.accessioned 2017-07-17T09:47:27Z
dc.date.available 2017-07-17T09:47:27Z
dc.date.issued 2011-09
dc.identifier.issn 0960-7412
dc.identifier.uri http://hdl.handle.net/10251/85245
dc.description.abstract [EN] Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hypocotyl gravitropism es_ES
dc.subject Auxin transport es_ES
dc.subject PIN polarity es_ES
dc.subject PINOID kinase es_ES
dc.subject GNOM ARF GEF es_ES
dc.title Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1365-313X.2011.04636.x
dc.relation.projectID info:eu-repo/grantAgreement/ASCR//IAA601630703
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rakusova, H.; Gallego Bartolomé, J.; Vanstraelen, M.; Robert, H.; Alabadí Diego, D.; Blazquez Rodriguez, MA.; Benková, E.... (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant Journal. 67(5):817-826. https://doi.org/10.1111/j.1365-313X.2011.04636.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1111/j.1365-313X.2011.04636.x es_ES
dc.description.upvformatpinicio 817 es_ES
dc.description.upvformatpfin 826 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 211849 es_ES
dc.identifier.pmid 21569134
dc.contributor.funder Association of the Samaritans of the Czech Republic
dc.contributor.funder European Research Council
dc.contributor.funder Research Foundation Flanders
dc.description.references Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wišniewska, J., Moulinier–Anzola, J. C., … Luschnig, C. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biology, 8(3), 249-256. doi:10.1038/ncb1369 es_ES
dc.description.references Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3 es_ES
dc.description.references Bennett, M. J., Marchant, A., Green, H. G., May, S. T., Ward, S. P., Millner, P. A., … Feldmann, K. A. (1996). Arabidopsis AUX1 Gene: A Permease-Like Regulator of Root Gravitropism. Science, 273(5277), 948-950. doi:10.1126/science.273.5277.948 es_ES
dc.description.references Blakeslee, J. J., Bandyopadhyay, A., Lee, O. R., Mravec, J., Titapiwatanakun, B., Sauer, M., … Murphy, A. S. (2007). Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis. The Plant Cell, 19(1), 131-147. doi:10.1105/tpc.106.040782 es_ES
dc.description.references Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., … Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433(7021), 39-44. doi:10.1038/nature03184 es_ES
dc.description.references Briggs, W. R. (1963). Mediation of Phototropic Responses of Corn Coleoptiles by Lateral Transport of Auxin. Plant Physiology, 38(3), 237-247. doi:10.1104/pp.38.3.237 es_ES
dc.description.references Cheng, Y., Qin, G., Dai, X., & Zhao, Y. (2008). NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proceedings of the National Academy of Sciences, 105(52), 21017-21022. doi:10.1073/pnas.0809761106 es_ES
dc.description.references Christensen, S. K., Dagenais, N., Chory, J., & Weigel, D. (2000). Regulation of Auxin Response by the Protein Kinase PINOID. Cell, 100(4), 469-478. doi:10.1016/s0092-8674(00)80682-0 es_ES
dc.description.references Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D. G., Mravec, J., Stierhof, Y.-D., & Friml, J. (2007). Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Current Biology, 17(6), 520-527. doi:10.1016/j.cub.2007.01.052 es_ES
dc.description.references Dhonukshe, P., Huang, F., Galvan-Ampudia, C. S., Mahonen, A. P., Kleine-Vehn, J., Xu, J., … Offringa, R. (2010). Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development, 137(19), 3245-3255. doi:10.1242/dev.052456 es_ES
dc.description.references Ding, Z., Galván-Ampudia, C. S., Demarsy, E., Łangowski, Ł., Kleine-Vehn, J., Fan, Y., … Friml, J. (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nature Cell Biology, 13(4), 447-452. doi:10.1038/ncb2208 es_ES
dc.description.references Epel, B. L., Warmbrodt, R. P., & Bandurski, R. S. (1992). Studies on the Longitudinal and Lateral Transport of IAA in the Shoots of Etiolated Corn Seedlings. Journal of Plant Physiology, 140(3), 310-318. doi:10.1016/s0176-1617(11)81084-9 es_ES
dc.description.references Esmon, C. A., Tinsley, A. G., Ljung, K., Sandberg, G., Hearne, L. B., & Liscum, E. (2005). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences, 103(1), 236-241. doi:10.1073/pnas.0507127103 es_ES
dc.description.references Estelle, M. (1996). Plant tropisms: The ins and outs of auxin. Current Biology, 6(12), 1589-1591. doi:10.1016/s0960-9822(02)70780-x es_ES
dc.description.references Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), 806-809. doi:10.1038/415806a es_ES
dc.description.references Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., … Palme, K. (2002). AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 108(5), 661-673. doi:10.1016/s0092-8674(02)00656-6 es_ES
dc.description.references Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., … Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426(6963), 147-153. doi:10.1038/nature02085 es_ES
dc.description.references Friml, J. (2004). A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 306(5697), 862-865. doi:10.1126/science.1100618 es_ES
dc.description.references Geisler, M., & Murphy, A. S. (2005). The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Letters, 580(4), 1094-1102. doi:10.1016/j.febslet.2005.11.054 es_ES
dc.description.references Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G., & Palme, K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413(6854), 425-428. doi:10.1038/35096571 es_ES
dc.description.references Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., … Jürgens, G. (2003). The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell, 112(2), 219-230. doi:10.1016/s0092-8674(03)00003-5 es_ES
dc.description.references Geldner, N. (2003). Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development, 131(2), 389-400. doi:10.1242/dev.00926 es_ES
dc.description.references Harrison, B. R., & Masson, P. H. (2007). ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. The Plant Journal, 53(2), 380-392. doi:10.1111/j.1365-313x.2007.03351.x es_ES
dc.description.references Holland, J. J., Roberts, D., & Liscum, E. (2009). Understanding phototropism: from Darwin to today. Journal of Experimental Botany, 60(7), 1969-1978. doi:10.1093/jxb/erp113 es_ES
dc.description.references Huang, F., Kemel Zago, M., Abas, L., van Marion, A., Galván-Ampudia, C. S., & Offringa, R. (2010). Phosphorylation of Conserved PIN Motifs Directs Arabidopsis PIN1 Polarity and Auxin Transport. The Plant Cell, 22(4), 1129-1142. doi:10.1105/tpc.109.072678 es_ES
dc.description.references Jaillais, Y., Fobis-Loisy, I., Miège, C., Rollin, C., & Gaude, T. (2006). AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 443(7107), 106-109. doi:10.1038/nature05046 es_ES
dc.description.references Jensen, P. J., Hangarter, R. P., & Estelle, M. (1998). Auxin Transport Is Required for Hypocotyl Elongation in Light-Grown but Not Dark-Grown Arabidopsis. Plant Physiology, 116(2), 455-462. doi:10.1104/pp.116.2.455 es_ES
dc.description.references Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., & Friml, J. (2008). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proceedings of the National Academy of Sciences, 105(46), 17812-17817. doi:10.1073/pnas.0808073105 es_ES
dc.description.references Kleine-Vehn, J., Ding, Z., Jones, A. R., Tasaka, M., Morita, M. T., & Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, 107(51), 22344-22349. doi:10.1073/pnas.1013145107 es_ES
dc.description.references Luschnig, C., Gaxiola, R. A., Grisafi, P., & Fink, G. R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes & Development, 12(14), 2175-2187. doi:10.1101/gad.12.14.2175 es_ES
dc.description.references Michniewicz, M., Zago, M. K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., … Friml, J. (2007). Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell, 130(6), 1044-1056. doi:10.1016/j.cell.2007.07.033 es_ES
dc.description.references Morita, M. T. (2010). Directional Gravity Sensing in Gravitropism. Annual Review of Plant Biology, 61(1), 705-720. doi:10.1146/annurev.arplant.043008.092042 es_ES
dc.description.references Morita, M. T., & Tasaka, M. (2004). Gravity sensing and signaling. Current Opinion in Plant Biology, 7(6), 712-718. doi:10.1016/j.pbi.2004.09.001 es_ES
dc.description.references Mravec, J., Kubes, M., Bielach, A., Gaykova, V., Petrasek, J., Skupa, P., … Friml, J. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development, 135(20), 3345-3354. doi:10.1242/dev.021071 es_ES
dc.description.references Muday, G. K., & Rahman, A. (s. f.). Auxin Transport and the Integration of Gravitropic Growth. Plant Tropisms, 47-77. doi:10.1002/9780470388297.ch3 es_ES
dc.description.references Ottenschlager, I., Wolff, P., Wolverton, C., Bhalerao, R. P., Sandberg, G., Ishikawa, H., … Palme, K. (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences, 100(5), 2987-2991. doi:10.1073/pnas.0437936100 es_ES
dc.description.references PERRIN, R. M., YOUNG, L.-S., NARAYANA MURTHY, U. M., HARRISON, B. R., WANG, Y., WILL, J. L., & MASSON, P. H. (2005). Gravity Signal Transduction in Primary Roots. Annals of Botany, 96(5), 737-743. doi:10.1093/aob/mci227 es_ES
dc.description.references Petrasek, J. (2006). PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science, 312(5775), 914-918. doi:10.1126/science.1123542 es_ES
dc.description.references Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J., & Muday, G. K. (2000). Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis. Plant Physiology, 122(2), 481-490. doi:10.1104/pp.122.2.481 es_ES
dc.description.references Rojas-Pierce, M., Titapiwatanakun, B., Sohn, E. J., Fang, F., Larive, C. K., Blakeslee, J., … Raikhel, N. V. (2007). Arabidopsis P-Glycoprotein19 Participates in the Inhibition of Gravitropism by Gravacin. Chemistry & Biology, 14(12), 1366-1376. doi:10.1016/j.chembiol.2007.10.014 es_ES
dc.description.references Sukumar, P., Edwards, K. S., Rahman, A., DeLong, A., & Muday, G. K. (2009). PINOID Kinase Regulates Root Gravitropism through Modulation of PIN2-Dependent Basipetal Auxin Transport in Arabidopsis. Plant Physiology, 150(2), 722-735. doi:10.1104/pp.108.131607 es_ES
dc.description.references Went, F. W. (1974). Reflections and Speculations. Annual Review of Plant Physiology, 25(1), 1-27. doi:10.1146/annurev.pp.25.060174.000245 es_ES
dc.description.references Wisniewska, J. (2006). Polar PIN Localization Directs Auxin Flow in Plants. Science, 312(5775), 883-883. doi:10.1126/science.1121356 es_ES
dc.description.references Yang, H., & Murphy, A. S. (2009). Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters inSchizosaccharomyces pombe. The Plant Journal, 59(1), 179-191. doi:10.1111/j.1365-313x.2009.03856.x es_ES
dc.description.references Yang, Y., Hammes, U. Z., Taylor, C. G., Schachtman, D. P., & Nielsen, E. (2006). High-Affinity Auxin Transport by the AUX1 Influx Carrier Protein. Current Biology, 16(11), 1123-1127. doi:10.1016/j.cub.2006.04.029 es_ES
dc.description.references Young, L. M., Evans, M. L., & Hertel, R. (1990). Correlations between Gravitropic Curvature and Auxin Movement across Gravistimulated Roots of Zea mays. Plant Physiology, 92(3), 792-796. doi:10.1104/pp.92.3.792 es_ES
dc.description.references Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., … Benkova, E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 137(4), 607-617. doi:10.1242/dev.041277 es_ES
dc.description.references Zhang, J., Nodzynski, T., Pencik, A., Rolcik, J., & Friml, J. (2009). PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proceedings of the National Academy of Sciences, 107(2), 918-922. doi:10.1073/pnas.0909460107 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem