- -

Multicore and FPGA implementations of emotional-based agent architectures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multicore and FPGA implementations of emotional-based agent architectures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domínguez Montagud, Carlos Pascual es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.contributor.author Crespo, Alfons es_ES
dc.contributor.author Albaladejo Meroño, José es_ES
dc.date.accessioned 2017-07-18T14:06:32Z
dc.date.available 2017-07-18T14:06:32Z
dc.date.issued 2015-02
dc.identifier.issn 0920-8542
dc.identifier.uri http://hdl.handle.net/10251/85419
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1307-6. es_ES
dc.description.abstract Control architectures based on Emotions are becoming promising solutions for the implementation of future robotic agents. The basic controllers of the architecture are the emotional processes that decide which behaviors of the robot must activate to fulfill the objectives. The number of emotional processes increases (hundreds of millions/s) with the complexity level of the application, reducing the processing capacity of the main processor to solve complex problems (millions of decisions in a given instant). However, the potential parallelism of the emotional processes permits their execution in parallel on FPGAs or Multicores, thus enabling slack computing in the main processor to tackle more complex dynamic problems. In this paper, an emotional architecture for mobile robotic agents is presented. The workload of the emotional processes is evaluated. Then, the main processor is extended with FPGA co-processors through Ethernet link. The FPGAs will be in charge of the execution of the emotional processes in parallel. Different Stratix FPGAs are compared to analyze their suitability to cope with the proposed mobile robotic agent applications. The applications are set up taking into account different environmental conditions, robot dynamics and emotional states. Moreover, the applications are run also on Multicore processors to compare their performance in relation to the FPGAs. Experimental results show that Stratix IV FPGA increases the performance in about one order of magnitude over the main processor and solves all the considered problems. Quad-Core increases the performance in 3.64 times, allowing to tackle about 89 % of the considered problems. Quad-Core has a lower cost than a Stratix IV, so more adequate solution but not for the most complex application. Stratix III could be applied to solve problems with around the double of the requirements that the main processor could support. Finally, a Dual-Core provides slightly better performance than stratix III and it is relatively cheaper. es_ES
dc.description.sponsorship This work was supported in part under Spanish Grant PAID/2012/325 of "Programa de Apoyo a la Investigacion y Desarrollo. Proyectos multidisciplinares", Universitat Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Real-time systems es_ES
dc.subject Multicore processors es_ES
dc.subject Field-programmable gate array (FPGA) es_ES
dc.subject Emotional-based architectures es_ES
dc.subject Intelligent robotic agents es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Multicore and FPGA implementations of emotional-based agent architectures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-014-1307-6
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2012-325/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Domínguez Montagud, CP.; Hassan Mohamed, H.; Crespo, A.; Albaladejo Meroño, J. (2015). Multicore and FPGA implementations of emotional-based agent architectures. Journal of Supercomputing. 71(2):479-507. https://doi.org/10.1007/s11227-014-1307-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11227-014-1307-6 es_ES
dc.description.upvformatpinicio 479 es_ES
dc.description.upvformatpfin 507 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 301571 es_ES
dc.identifier.eissn 1573-0484
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Malfaz M, Salichs MA (2010) Using MUDs as an experimental platform for testing a decision making system for self-motivated autonomous agents. Artif Intell Simul Behav J 2(1):21–44 es_ES
dc.description.references Damiano L, Cañamero L (2010) Constructing emotions. Epistemological groundings and applications in robotics for a synthetic approach to emotions. In: Proceedings of international symposium on aI-inspired biology, The Society for the Study of Artificial Intelligence, pp 20–28 es_ES
dc.description.references Hawes N, Wyatt J, Sloman A (2009) Exploring design space for an integrated intelligent system. Knowl Based Syst 22(7):509–515 es_ES
dc.description.references Sloman A (2009) Some requirements for human-like robots: why the recent over-emphasis on embodiment has held up progress. Creat Brain Like Intell 2009:248–277 es_ES
dc.description.references Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. In: Proceedings of the IEEE, Mar 2012, vol 100, no 3, pp 571–589 es_ES
dc.description.references iRobot industrial robots website. http://www.irobot.com/gi/ground/ . Accessed 22 Sept 2014 es_ES
dc.description.references Moravec H (2009) Rise of the robots: the future of artificial intelligence. Scientific American, March 2009. http://www.scientificamerican.com/article/rise-of-the-robots/ . Accessed 14 Oct 2014. es_ES
dc.description.references Thu Bui L, Abbass HA, Barlow M, Bender A (2012) Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives. IEEE Trans Evolut Comput 16(1):1–19 es_ES
dc.description.references Pedrycz W, Song M (2011) Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Trans Fuzzy Syst 19(3):527–539 es_ES
dc.description.references Lee-Johnson CP, Carnegie DA (2010) Mobile robot navigation modulated by artificial emotions. IEEE Trans Syst Man Cybern Part B 40(2):469–480 es_ES
dc.description.references Daglarli E, Temeltas H, Yesiloglu M (2009) Behavioral task processing for cognitive robots using artificial emotions. Neurocomputing 72(13):2835–2844 es_ES
dc.description.references Ventura R, Pinto-Ferreira C (2009) Responding efficiently to relevant stimuli using an emotion-based agent architecture. Neurocomputing 72(13):2923–2930 es_ES
dc.description.references Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. Proc IEEE 100(3):571–589 es_ES
dc.description.references Salichs MA, Malfaz M (2012) A new approach to modeling emotions and their use on a decision-making system for artificial agents. Affect Comput IEEE Trans 3(1):56–68 es_ES
dc.description.references Altera Corporation (2011) Stratix III device handbook, vol 1–2, version 2.2. http://www.altera.com/literature/lit-stx3.jsp . Accessed 14 Oct 2014. es_ES
dc.description.references Altera Corporation (2014) Stratix IV device handbook, vol 1–4, version 5.9. http://www.altera.com/literature/lit-stratix-iv.jsp . Accessed 14 Oct 2014. es_ES
dc.description.references Naouar MW, Monmasson E, Naassani AA, Slama-Belkhodja I, Patin N (2007) FPGA-based current controllers for AC machine drives: a review. IEEE Trans Ind Electr 54(4):1907–1925 es_ES
dc.description.references Intel Corporation (2014) Desktop 4th generation Intel Core Processor Family, Desktop Intel Pentium Processor Family, and Desktop Intel Celeron Processor Family, Datasheet, vol 1, 2 es_ES
dc.description.references March JL, Sahuquillo J, Hassan H, Petit S, Duato J (2011) A new energy-aware dynamic task set partitioning algorithm for soft and hard embedded real-time systems. Comput J 54(8):1282–1294 es_ES
dc.description.references Del Campo I, Basterretxea K, Echanobe J, Bosque G, Doctor F (2012) A system-on-chip development of a neuro-fuzzy embedded agent for ambient-intelligence environments. IEEE Trans Syst Man Cybern Part B 42(2):501–512 es_ES
dc.description.references Pedraza C, Castillo J, Martínez JI, Huerta P, Bosque JL, Cano J (2011) Genetic algorithm for Boolean minimization in an FPGA cluster. J Supercomput 58(2):244–252 es_ES
dc.description.references Orlowska-Kowalska T, Kaminski M (2011) FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system. IEEE Trans Ind Inf 7(3):436–445 es_ES
dc.description.references Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-icaza R, Datta P, Sawada J, Wong TM, Feldman V, Amir A, Ben-dayan D, Mcquinn E, Risk WP, Modha DS (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of international joint conference on neural networks, IEEE (IJCNN’2013) es_ES
dc.description.references IBM Cognitive Computing and Neurosynaptic chips website. http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml . Accessed 22 Sept 2014 es_ES
dc.description.references Seo E, Jeong J, Park S, Lee J (2008) Energy efficient scheduling of real-time tasks on multicore processors. IEEE Trans Parallel Distrib Syst 19(11):1540–1552 es_ES
dc.description.references Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and average case behavior. In: Proceedings of real time systems symposium, IEEE 1989, pp 166–171 es_ES
dc.description.references Ng-Thow-Hing V, Lim J, Wormer J, Sarvadevabhatla RK, Rocha C, Fujimura K, Sakagami Y (2008) The memory game: creating a human-robot interactive scenario for ASIMO. In: Proceedings of intelligent robots and systems, 2008, IROS 2008, IEEE/RSJ international conference, pp 779–786 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem