- -

Function Spaces and Strong Variants of Continuity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Function Spaces and Strong Variants of Continuity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kohli, J.K. es_ES
dc.contributor.author Singh, D. es_ES
dc.date.accessioned 2017-07-28T07:49:10Z
dc.date.available 2017-07-28T07:49:10Z
dc.date.issued 2008-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/85930
dc.description.abstract [EN] It is shown that if domain is a sum connected space and range is a T0-space, then the notions of strong continuity, perfect continuity and cl-supercontinuity coincide. Further, it is proved that if X is a sum connected space and Y is Hausdorff, then the set of all strongly continuous (perfectly continuous, cl-supercontinuous) functions is closed in Y X in the topology of pointwise convergence. The results obtained in the process strengthen and extend certain results of Levine and Naimpally. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Strongly continuous function es_ES
dc.subject Perfectly continuous function es_ES
dc.subject cl-supercontinuous function es_ES
dc.subject Sum connected spaces es_ES
dc.subject k-space es_ES
dc.subject Topology of point wise convergence es_ES
dc.subject Topology of uniform convergence on compacta es_ES
dc.subject Compact open topology es_ES
dc.subject Equicontinuity es_ES
dc.subject Even continuit es_ES
dc.title Function Spaces and Strong Variants of Continuity es_ES
dc.type Artículo es_ES
dc.date.updated 2017-07-28T07:31:53Z
dc.identifier.doi 10.4995/agt.2008.1867
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kohli, J.; Singh, D. (2008). Function Spaces and Strong Variants of Continuity. Applied General Topology. 9(1):33-38. https://doi.org/10.4995/agt.2008.1867 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2008.1867 es_ES
dc.description.upvformatpinicio 33 es_ES
dc.description.upvformatpfin 38 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9
dc.description.issue 1
dc.identifier.eissn 1989-4147


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem