- -

Symmetric Bombay topology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Symmetric Bombay topology

Show full item record

Di Maio, G.; Meccariello, E.; Naimpally, S. (2008). Symmetric Bombay topology. Applied General Topology. 9(1):109-132. doi:10.4995/agt.2008.1872

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85937

Files in this item

Item Metadata

Title: Symmetric Bombay topology
Author:
Issued date:
Abstract:
[EN] The subject of hyperspace topologies on closed or closed and compact subsets of a topological space X began in the early part of the last century with the discoveries of Hausdorff metric and Vietoris hit-and-miss ...[+]
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2008.1872
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2008.1872
Type: Artículo

References

Beer, G. (1993). Topologies on Closed and Closed Convex Sets. doi:10.1007/978-94-015-8149-3

M. Coban, Note sur la topologie exponentielle, Fund. Math. LXXI (1971), 27–41.

Di Caprio, D., & Meccariello, E. (2000). Acta Mathematica Hungarica, 88(1/2), 73-93. doi:10.1023/a:1006752510935 [+]
Beer, G. (1993). Topologies on Closed and Closed Convex Sets. doi:10.1007/978-94-015-8149-3

M. Coban, Note sur la topologie exponentielle, Fund. Math. LXXI (1971), 27–41.

Di Caprio, D., & Meccariello, E. (2000). Acta Mathematica Hungarica, 88(1/2), 73-93. doi:10.1023/a:1006752510935

G. Di Maio and L. Holá, On hit-and miss topologies, Rend. Acc. Sc. Fis. Mat. Napoli 57 (1995), 103–124.

Di Maio, G., Meccariello, E., & Naimpally, S. (2003). Bombay hypertopologies. Applied General Topology, 4(2), 421. doi:10.4995/agt.2003.2042

G. Di Maio, E. Meccariello and S. Naimpally, Symmetric proximal hypertopology, Rostock. Math. Kolloq. 58 (2003), 2–25.

Harris, D. (1970). Regular-closed spaces and proximities. Pacific Journal of Mathematics, 34(3), 675-685. doi:10.2140/pjm.1970.34.675

Harris, D. (1970). Regular-closed spaces and proximities. Pacific Journal of Mathematics, 34(3), 675-685. doi:10.2140/pjm.1970.34.675

Harris, D. (1970). Regular-closed spaces and proximities. Pacific Journal of Mathematics, 34(3), 675-685. doi:10.2140/pjm.1970.34.675

D. Harris, Completely regular proximities and RC-proximities, Fund. Math. LXXXV (1974), 103–111.

Holà, L., & Levi, S. (1997). Set-Valued Analysis, 5(4), 309-321. doi:10.1023/a:1008608209952

M. Marjanovic, Topologies on collections of closed subsets, Publ. Inst. Math. (Beograd) 20 (1966), 196–130.

Michael, E. (1951). Topologies on spaces of subsets. Transactions of the American Mathematical Society, 71(1), 152-152. doi:10.1090/s0002-9947-1951-0042109-4

Naimpally, S. (2002). All hypertopologies are hit-and-miss. Applied General Topology, 3(1), 45. doi:10.4995/agt.2002.2111

S. Naimpally and B. Warrack, Proximity spaces, Cambridge Tracts in Mathematics 59, Cambty Press, 1970.

Poppe, H. (1965). Eine Bemerkung �ber Trennungsaxiome in R�umen von abgeschlossenen Teilmengen topologischer R�ume. Archiv der Mathematik, 16(1), 197-199. doi:10.1007/bf01220021

H. Poppe, Einigee Bemerkungen ¨uber den R¨schlossenen Mengen, Fund. Math. 59 (1966), 159–169.

R. F. Snipes, Functions that preserve Cauchy sequences, Nieuw Arch. Voor Wiskunde (3) 25 (1977), 409–422.

W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966.

Wijsman, R. A. (1966). Convergence of sequences of convex sets, cones and functions. II. Transactions of the American Mathematical Society, 123(1), 32-32. doi:10.1090/s0002-9947-1966-0196599-8

Wijsman, R. A. (1966). Convergence of sequences of convex sets, cones and functions. II. Transactions of the American Mathematical Society, 123(1), 32-32. doi:10.1090/s0002-9947-1966-0196599-8

S. Willard, General Topology, Addison-Wesley, 1970.

[-]

This item appears in the following Collection(s)

Show full item record