- -

On the continuity of factorizations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the continuity of factorizations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Comfort, W.W. es_ES
dc.contributor.author Gotchev, Ivan S. es_ES
dc.contributor.author Recoder-Nuñez, Luis es_ES
dc.date.accessioned 2017-09-05T11:50:25Z
dc.date.available 2017-09-05T11:50:25Z
dc.date.issued 2008-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86442
dc.description.abstract [EN] Let {Xi : i ∈ I} be a set of sets, XJ :=Пi∈J Xi when Ø ≠ J ⊆ I; Y be a subset of XI , Z be a set, and f : Y → Z. Then f is said to depend on J if p, q ∈ Y , pJ = qJ ⇒ f(p) = f(q); in this case, fJ : πJ [Y ] → Z is well-defined by the rule f = fJ ◦ πJ|Y When the Xi and Z are spaces and f : Y → Z is continuous with Y dense in XI , several natural questions arise: (a) does f depend on some small J ⊆ I? (b) if it does, when is fJ continuous? (c) if fJ is continuous, when does it extend to continuous fJ : XJ → Z? (d) if fJ so extends, when does f extend to continuous f : XI → Z? (e) if f depends on some J ⊆ I and f extends to continuous f : XI → Z, when does f also depend on J? The authors offer answers (some complete, some partial) to some of these questions, together with relevant counterexamples. Theorem 1. f has a continuous extension f : XI → Z that depends on J if and only if fJ is continuous and has a continuous extension fJ : XJ → Z. Example 1. For ω ≤ k ≤ c there are a dense subset Y of [0, 1]k and f ∈ C(Y, [0, 1]) such that f depends on every nonempty J ⊆ k, there is no J ∈ [k]<ω such that fJ is continuous, and f extends continuously over [0, 1]k. Example 2. There are a Tychonoff space XI, dense Y ⊆ XI, f ∈ C(Y ), and J ∈ [I]<ω such that f depends on J, πJ [Y ] is C-embedded in XJ , and f does not extend continuously over XI . es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Product space es_ES
dc.subject Dense subspace es_ES
dc.subject Continuous factorization es_ES
dc.subject Continuous extensions of maps es_ES
dc.title On the continuity of factorizations es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-05T11:04:30Z
dc.identifier.doi 10.4995/agt.2008.1806
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Comfort, W.; Gotchev, IS.; Recoder-Nuñez, L. (2008). On the continuity of factorizations. Applied General Topology. 9(2):263-280. https://doi.org/10.4995/agt.2008.1806 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2008.1806 es_ES
dc.description.upvformatpinicio 263 es_ES
dc.description.upvformatpfin 280 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9
dc.description.issue 2
dc.identifier.eissn 1989-4147


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem