Mostrar el registro sencillo del ítem
dc.contributor.author | Comfort, W.W. | es_ES |
dc.contributor.author | Gotchev, Ivan S. | es_ES |
dc.contributor.author | Recoder-Nuñez, Luis | es_ES |
dc.date.accessioned | 2017-09-05T11:50:25Z | |
dc.date.available | 2017-09-05T11:50:25Z | |
dc.date.issued | 2008-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86442 | |
dc.description.abstract | [EN] Let {Xi : i ∈ I} be a set of sets, XJ :=Пi∈J Xi when Ø ≠ J ⊆ I; Y be a subset of XI , Z be a set, and f : Y → Z. Then f is said to depend on J if p, q ∈ Y , pJ = qJ ⇒ f(p) = f(q); in this case, fJ : πJ [Y ] → Z is well-defined by the rule f = fJ ◦ πJ|Y When the Xi and Z are spaces and f : Y → Z is continuous with Y dense in XI , several natural questions arise: (a) does f depend on some small J ⊆ I? (b) if it does, when is fJ continuous? (c) if fJ is continuous, when does it extend to continuous fJ : XJ → Z? (d) if fJ so extends, when does f extend to continuous f : XI → Z? (e) if f depends on some J ⊆ I and f extends to continuous f : XI → Z, when does f also depend on J? The authors offer answers (some complete, some partial) to some of these questions, together with relevant counterexamples. Theorem 1. f has a continuous extension f : XI → Z that depends on J if and only if fJ is continuous and has a continuous extension fJ : XJ → Z. Example 1. For ω ≤ k ≤ c there are a dense subset Y of [0, 1]k and f ∈ C(Y, [0, 1]) such that f depends on every nonempty J ⊆ k, there is no J ∈ [k]<ω such that fJ is continuous, and f extends continuously over [0, 1]k. Example 2. There are a Tychonoff space XI, dense Y ⊆ XI, f ∈ C(Y ), and J ∈ [I]<ω such that f depends on J, πJ [Y ] is C-embedded in XJ , and f does not extend continuously over XI . | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Product space | es_ES |
dc.subject | Dense subspace | es_ES |
dc.subject | Continuous factorization | es_ES |
dc.subject | Continuous extensions of maps | es_ES |
dc.title | On the continuity of factorizations | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-05T11:04:30Z | |
dc.identifier.doi | 10.4995/agt.2008.1806 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Comfort, W.; Gotchev, IS.; Recoder-Nuñez, L. (2008). On the continuity of factorizations. Applied General Topology. 9(2):263-280. https://doi.org/10.4995/agt.2008.1806 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2008.1806 | es_ES |
dc.description.upvformatpinicio | 263 | es_ES |
dc.description.upvformatpfin | 280 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 |