- -

Best proximity pair theorems for relatively nonexpansive mappings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Best proximity pair theorems for relatively nonexpansive mappings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sankar Raj, V. es_ES
dc.contributor.author Veeramani, P. es_ES
dc.date.accessioned 2017-09-06T11:37:36Z
dc.date.available 2017-09-06T11:37:36Z
dc.date.issued 2009-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86546
dc.description.abstract [EN] Let A, B be nonempty closed bounded convex subsets of a uniformly convex Banach space and T : A∪B → A∪B be a map such that T(A) ⊆ B, T(B) ⊆ A and ǁTx − Tyǁ ≤ ǁx − yǁ, for x in A and y in B. The fixed point equation Tx = x does not possess a solution when A ∩ B = Ø. In such a situation it is natural to explore to find an element x0 in A satisfying ǁx0 − Tx0ǁ = inf{ǁa − bǁ : a ∈ A, b ∈ B} = dist(A,B). Using Zorn’s lemma, Eldred et.al proved that such a point x0 exists in a uniformly convex Banach space settings under the conditions stated above. In this paper, by using a convergence theorem we attempt to prove the existence of such a point x0 (called best proximity point) without invoking Zorn’s lemma. es_ES
dc.description.sponsorship The authors would like to thank the referee for useful comments and suggestions for the improvement of the paper. The first author acknowledges the Council of Scientific and Industrial Research(India) for the financial support provided in the form of a Junior Research Fellowship to carry out this research work.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Best proximity pair es_ES
dc.subject Relatively nonexpansive map es_ES
dc.subject Cyclic contraction map es_ES
dc.subject Strictly convex space es_ES
dc.subject Uniformly convex Banach space es_ES
dc.subject Fixed point es_ES
dc.subject Metric projection es_ES
dc.title Best proximity pair theorems for relatively nonexpansive mappings es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-06T11:22:27Z
dc.identifier.doi 10.4995/agt.2009.1784
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sankar Raj, V.; Veeramani, P. (2009). Best proximity pair theorems for relatively nonexpansive mappings. Applied General Topology. 10(1):21-28. https://doi.org/10.4995/agt.2009.1784 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2009.1784 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Council of Scientific and Industrial Research, India


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem