Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9
Browder, F. E., & Petryshyn, W. V. (1966). The solution by iteration of nonlinear functional equations in Banach spaces. Bulletin of the American Mathematical Society, 72(3), 571-576. doi:10.1090/s0002-9904-1966-11544-6
Cho, Y. J., Murthy, P. P., & Jungck, G. (2000). A theorem of Meir-Keeler type revisited. International Journal of Mathematics and Mathematical Sciences, 23(7), 507-511. doi:10.1155/s0161171200002258
[+]
Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9
Browder, F. E., & Petryshyn, W. V. (1966). The solution by iteration of nonlinear functional equations in Banach spaces. Bulletin of the American Mathematical Society, 72(3), 571-576. doi:10.1090/s0002-9904-1966-11544-6
Cho, Y. J., Murthy, P. P., & Jungck, G. (2000). A theorem of Meir-Keeler type revisited. International Journal of Mathematics and Mathematical Sciences, 23(7), 507-511. doi:10.1155/s0161171200002258
Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075
Itoh, S., & Takahashi, W. (1977). Single-valued mappings, multivalued mappings and fixed-point theorems. Journal of Mathematical Analysis and Applications, 59(3), 514-521. doi:10.1016/0022-247x(77)90078-6
Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299
Jungck, G. (1976). Commuting Mappings and Fixed Points. The American Mathematical Monthly, 83(4), 261. doi:10.2307/2318216
G. Jungck and B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure Appl. Math. 29, no. 3 (1988), 227–238.
K. H. Kim, S. M. Kang and Y. J. Cho, Common fixed point of −contractive mappings, East. Asian Math. J. 15 (1999), 211–222.
Lim, T.-C. (2001). On characterizations of Meir–Keeler contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 46(1), 113-120. doi:10.1016/s0362-546x(99)00448-4
J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Cas. Pest. Mat. 105 (1980), 341–344.
Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6
Naimpally, S. A., Singh, S. L., & Whitfield, J. H. M. (1986). Coincidence Theorems for Hybrid Contractions. Mathematische Nachrichten, 127(1), 177-180. doi:10.1002/mana.19861270112
S. Park and B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon. 26 (1981), 13–20.
Proinov, P. D. (2006). Fixed point theorems in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 64(3), 546-557. doi:10.1016/j.na.2005.04.044
Pant, R. P. (1994). Common Fixed Points of Noncommuting Mappings. Journal of Mathematical Analysis and Applications, 188(2), 436-440. doi:10.1006/jmaa.1994.1437
Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4
Rhoades, B. E., Singh, S. L., & Kulshrestha, C. (1984). Coincidence theorems for some multivalued mappings. International Journal of Mathematics and Mathematical Sciences, 7(3), 429-434. doi:10.1155/s0161171284000466
K. P. R. Sastry, S. V. R. Naidu, I. H. N. Rao and K. P. R. Rao, Common fixed point points for asymptotically regular mappings, Indian J. Pure Appl. math. 15, no. 8 (1984), 849–854.
Singh, S. L., Ha, K. S., & Cho, Y. J. (1989). Coincidence and fixed points of nonlinear Hybrid contractions. International Journal of Mathematics and Mathematical Sciences, 12(2), 247-256. doi:10.1155/s0161171289000281
Singh, S. L., & Mishra, S. N. (2001). Coincidences and Fixed Points of Nonself Hybrid Contractions. Journal of Mathematical Analysis and Applications, 256(2), 486-497. doi:10.1006/jmaa.2000.7301
[-]