- -

New coincidence and common fixed point theorems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New coincidence and common fixed point theorems

Show full item record

Singh, S.; Hematulin, A.; Pant, R. (2009). New coincidence and common fixed point theorems. Applied General Topology. 10(1):121-130. https://doi.org/10.4995/agt.2009.1792

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86553

Files in this item

Item Metadata

Title: New coincidence and common fixed point theorems
Author: Singh, S.L. Hematulin, Apichai Pant, Rajendra
Issued date:
Abstract:
[EN] In this paper, we obtain some extensions and a generalization of a remarkable fixed point theorem of Proinov. Indeed, we obtain some coincidence and fixed point theorems for asymptotically regular non-self and self-maps ...[+]
Subjects: Coincidence point , Fixed point , Banach contraction , Quasi-contraction , Asymptotic regularity
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2009.1792
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2009.1792
Type: Artículo

References

Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9

Browder, F. E., & Petryshyn, W. V. (1966). The solution by iteration of nonlinear functional equations in Banach spaces. Bulletin of the American Mathematical Society, 72(3), 571-576. doi:10.1090/s0002-9904-1966-11544-6

Cho, Y. J., Murthy, P. P., & Jungck, G. (2000). A theorem of Meir-Keeler type revisited. International Journal of Mathematics and Mathematical Sciences, 23(7), 507-511. doi:10.1155/s0161171200002258 [+]
Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9

Browder, F. E., & Petryshyn, W. V. (1966). The solution by iteration of nonlinear functional equations in Banach spaces. Bulletin of the American Mathematical Society, 72(3), 571-576. doi:10.1090/s0002-9904-1966-11544-6

Cho, Y. J., Murthy, P. P., & Jungck, G. (2000). A theorem of Meir-Keeler type revisited. International Journal of Mathematics and Mathematical Sciences, 23(7), 507-511. doi:10.1155/s0161171200002258

Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075

Itoh, S., & Takahashi, W. (1977). Single-valued mappings, multivalued mappings and fixed-point theorems. Journal of Mathematical Analysis and Applications, 59(3), 514-521. doi:10.1016/0022-247x(77)90078-6

Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299

Jungck, G. (1976). Commuting Mappings and Fixed Points. The American Mathematical Monthly, 83(4), 261. doi:10.2307/2318216

G. Jungck and B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure Appl. Math. 29, no. 3 (1988), 227–238.

K. H. Kim, S. M. Kang and Y. J. Cho, Common fixed point of −contractive mappings, East. Asian Math. J. 15 (1999), 211–222.

Lim, T.-C. (2001). On characterizations of Meir–Keeler contractive maps. Nonlinear Analysis: Theory, Methods & Applications, 46(1), 113-120. doi:10.1016/s0362-546x(99)00448-4

J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Cas. Pest. Mat. 105 (1980), 341–344.

Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6

Naimpally, S. A., Singh, S. L., & Whitfield, J. H. M. (1986). Coincidence Theorems for Hybrid Contractions. Mathematische Nachrichten, 127(1), 177-180. doi:10.1002/mana.19861270112

S. Park and B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japon. 26 (1981), 13–20.

Proinov, P. D. (2006). Fixed point theorems in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 64(3), 546-557. doi:10.1016/j.na.2005.04.044

Pant, R. P. (1994). Common Fixed Points of Noncommuting Mappings. Journal of Mathematical Analysis and Applications, 188(2), 436-440. doi:10.1006/jmaa.1994.1437

Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4

Rhoades, B. E., Singh, S. L., & Kulshrestha, C. (1984). Coincidence theorems for some multivalued mappings. International Journal of Mathematics and Mathematical Sciences, 7(3), 429-434. doi:10.1155/s0161171284000466

K. P. R. Sastry, S. V. R. Naidu, I. H. N. Rao and K. P. R. Rao, Common fixed point points for asymptotically regular mappings, Indian J. Pure Appl. math. 15, no. 8 (1984), 849–854.

Singh, S. L., Ha, K. S., & Cho, Y. J. (1989). Coincidence and fixed points of nonlinear Hybrid contractions. International Journal of Mathematics and Mathematical Sciences, 12(2), 247-256. doi:10.1155/s0161171289000281

Singh, S. L., & Mishra, S. N. (2001). Coincidences and Fixed Points of Nonself Hybrid Contractions. Journal of Mathematical Analysis and Applications, 256(2), 486-497. doi:10.1006/jmaa.2000.7301

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record