- -

Well-posedness, bornologies, and the structure of metric spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Well-posedness, bornologies, and the structure of metric spaces

Show full item record

Beer, G.; Segura, M. (2009). Well-posedness, bornologies, and the structure of metric spaces. Applied General Topology. 10(1):131-157. doi:10.4995/agt.2009.1793.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86555

Files in this item

Item Metadata

Title: Well-posedness, bornologies, and the structure of metric spaces
Author:
Issued date:
Abstract:
[EN] Given a continuous nonnegative functional λ that makes sense defined on an arbitrary metric space (X, d), one may consider those spaces in which each sequence (xn) for which lim n→∞λ(xn) = 0 clusters. The compact ...[+]
Subjects: Well-posed problem , Bornology , UC-space , Cofinally complete space , Strong uniform continuity , ornological convergence , Shielded from closed sets
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2009.1793
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2009.1793
Thanks:
This research was supported by the following grant: NIH MARC U*STAR GM08228
Type: Artículo

This item appears in the following Collection(s)

Show full item record