Mostrar el registro sencillo del ítem
dc.contributor.author | Vroegrijk, Tom | es_ES |
dc.date.accessioned | 2017-09-07T12:09:18Z | |
dc.date.available | 2017-09-07T12:09:18Z | |
dc.date.issued | 2009-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86709 | |
dc.description.abstract | [EN] Bornological universes were introduced some time ago by Hu and obtained renewed interest in recent articles on convergence in hyperspaces and function spaces and optimization theory. One o fHu's results gives us a necessary and sufficient condition for which a bornological universe is metrizable. In this article we will extend thi sresult and give a characterization of uniformizable bornological universes. Furthermore, a construction on bornological universes that the author used to find the bornological dual of function spaces endowed with the bounded-open topology will be used to define realcompactness for bornological universes. We will also give various characterizations of this new concept. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Bornology | es_ES |
dc.subject | Uniform space | es_ES |
dc.subject | Totally bounded | es_ES |
dc.subject | Realcompactness | es_ES |
dc.title | Uniformizable and realcompact bornological universes | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-07T11:29:46Z | |
dc.identifier.doi | 10.4995/agt.2009.1740 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Vroegrijk, T. (2009). Uniformizable and realcompact bornological universes. Applied General Topology. 10(2):277-287. https://doi.org/10.4995/agt.2009.1740 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2009.1740 | es_ES |
dc.description.upvformatpinicio | 277 | es_ES |
dc.description.upvformatpfin | 287 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Beer, G., & Levi, S. (2008). Gap, Excess and Bornological Convergence. Set-Valued Analysis, 16(4), 489-506. doi:10.1007/s11228-008-0086-8 | es_ES |
dc.description.references | G. Beer, S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, Journal of Convex Analysis 15 (2008), 439–453. | es_ES |
dc.description.references | Beer, G., & Levi, S. (2009). Strong uniform continuity. Journal of Mathematical Analysis and Applications, 350(2), 568-589. doi:10.1016/j.jmaa.2008.03.058 | es_ES |
dc.description.references | N. Bourbaki, Topologie Générale, (Hermann, Paris, 1965). | es_ES |
dc.description.references | J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Mathematical Journal 84 (1959), 544–563. | es_ES |
dc.description.references | S. Hu, Boundedness in a topological space, Journal de Mathématiques Pures et Appliquées 28 (1949). | es_ES |
dc.description.references | S. Hu, Introduction to General Topology, (Holden-Day, San Francisco, 1966). J. Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics 519 (1976). T. Vroegrijk, Pointwise bornological vector spaces, Topology and its applications, to appear. | es_ES |