- -

Uniformizable and realcompact bornological universes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uniformizable and realcompact bornological universes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vroegrijk, Tom es_ES
dc.date.accessioned 2017-09-07T12:09:18Z
dc.date.available 2017-09-07T12:09:18Z
dc.date.issued 2009-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86709
dc.description.abstract [EN] Bornological universes were introduced some time ago by Hu and obtained renewed interest in recent articles on convergence in hyperspaces and function spaces and optimization theory. One o fHu's results gives us a necessary and sufficient condition for which a bornological universe is metrizable. In this article we will extend thi sresult and give a characterization of uniformizable bornological universes. Furthermore, a construction on bornological universes that the author used to find the bornological dual of function spaces endowed with the bounded-open topology will be used to define realcompactness for bornological universes. We will also give various characterizations of this new concept. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Bornology es_ES
dc.subject Uniform space es_ES
dc.subject Totally bounded es_ES
dc.subject Realcompactness es_ES
dc.title Uniformizable and realcompact bornological universes es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-07T11:29:46Z
dc.identifier.doi 10.4995/agt.2009.1740
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vroegrijk, T. (2009). Uniformizable and realcompact bornological universes. Applied General Topology. 10(2):277-287. https://doi.org/10.4995/agt.2009.1740 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2009.1740 es_ES
dc.description.upvformatpinicio 277 es_ES
dc.description.upvformatpfin 287 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Beer, G., & Levi, S. (2008). Gap, Excess and Bornological Convergence. Set-Valued Analysis, 16(4), 489-506. doi:10.1007/s11228-008-0086-8 es_ES
dc.description.references G. Beer, S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, Journal of Convex Analysis 15 (2008), 439–453. es_ES
dc.description.references Beer, G., & Levi, S. (2009). Strong uniform continuity. Journal of Mathematical Analysis and Applications, 350(2), 568-589. doi:10.1016/j.jmaa.2008.03.058 es_ES
dc.description.references N. Bourbaki, Topologie Générale, (Hermann, Paris, 1965). es_ES
dc.description.references J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Mathematical Journal 84 (1959), 544–563. es_ES
dc.description.references S. Hu, Boundedness in a topological space, Journal de Mathématiques Pures et Appliquées 28 (1949). es_ES
dc.description.references S. Hu, Introduction to General Topology, (Holden-Day, San Francisco, 1966). J. Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics 519 (1976). T. Vroegrijk, Pointwise bornological vector spaces, Topology and its applications, to appear. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem