Abbasbandy, S.; Bakhtiari, P.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Lotfi, T. (2016). New efficient methods for solving nonlinear systems of equations with arbitrary even order. Applied Mathematics and Computation. 287:94-103. https://doi.org/10.1016/j.amc.2016.04.038
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86832
Title:
|
New efficient methods for solving nonlinear systems of equations with arbitrary even order
|
Author:
|
Abbasbandy, Saeid
Bakhtiari, Parisa
Cordero Barbero, Alicia
Torregrosa Sánchez, Juan Ramón
Lotfi, Taher
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
In 2011, Khattri and Abbasbandy developed an optimal two-step Jarratt-like method for approximating simple roots of a nonlinear equation. We develop their method for solving nonlinear systems of equations. The main feature ...[+]
In 2011, Khattri and Abbasbandy developed an optimal two-step Jarratt-like method for approximating simple roots of a nonlinear equation. We develop their method for solving nonlinear systems of equations. The main feature of the extended methods is that it uses only one LU factorization which preserves and reduces computational complexities. Following this aim, the suggested method is generalized in such a way that we increase the order of convergence but we do not need new LU factorization. Convergence and complexity analysis are provided rigorously. Using some small and large systems, applicability along with some comparisons are illustrated.
[-]
|
Subjects:
|
Nonlinear systems
,
Multipoint iteration
,
Matrix LU factorization
,
Computational efficiency
|
Copyrigths:
|
Cerrado |
Source:
|
Applied Mathematics and Computation. (issn:
0096-3003
)
|
DOI:
|
10.1016/j.amc.2016.04.038
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://doi.org/10.1016/j.amc.2016.04.038
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES/
|
Thanks:
|
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P.
|
Type:
|
Artículo
|