Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Gutiérrez, José Manuel | es_ES |
dc.contributor.author | Magreñán, A. Alberto | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2017-09-08T11:56:48Z | |
dc.date.available | 2017-09-08T11:56:48Z | |
dc.date.issued | 2016-07-20 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.uri | http://hdl.handle.net/10251/86833 | |
dc.description.abstract | A one-parametric family of fourth-order iterative methods for solving nonlinear systems is presented, proving the fourth-order of convergence of all members in this family, except one of them whose order is five. The methods in our family are numerically compared with other known methods in terms of the classical efficiency index (order of convergence and number of functional evaluations) and in terms of the operational efficiency index, which also takes into account the total number of product-quotients per iteration. In order to analyze its stability and its dynamical properties, the parameter space for quadratic polynomials is shown. The stability of the strange fixed points is studied in this case. We note that even for this particular case, the family presents a very interesting dynamical behavior. The analysis of the parameter plane allows us to find values for the involved parameter with good stability properties as well as other values with bad numerical behavior. Finally, amongst the first ones, there is a special value of the parameter related to a fifth-order method in the family. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnologia MTM2014-52016-C02-1,2-P | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Nonlinear problems | es_ES |
dc.subject | Parameter space | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Basins of attraction | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability analysis of a parametric family of iterative methods for solving nonlinear models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2016.03.021 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-1-P/ES/ECUACIONES NO LINEALES Y METODOS ITERATIVOS. APLICACIONES A PROBLEMAS DE OPTIMIZACION Y ECUACIONES MATRICIALES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Gutiérrez, JM.; Magreñán, AA.; Torregrosa Sánchez, JR. (2016). Stability analysis of a parametric family of iterative methods for solving nonlinear models. Applied Mathematics and Computation. 285:26-40. https://doi.org/10.1016/j.amc.2016.03.021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.amc.2016.03.021 | es_ES |
dc.description.upvformatpinicio | 26 | es_ES |
dc.description.upvformatpfin | 40 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 285 | es_ES |
dc.relation.senia | 316650 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |