Mostrar el registro sencillo del ítem
dc.contributor.author | Günther, Bernd | es_ES |
dc.date.accessioned | 2017-09-08T12:14:29Z | |
dc.date.available | 2017-09-08T12:14:29Z | |
dc.date.issued | 2010-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86846 | |
dc.description.abstract | [EN] A theory of random Borel sets is presented, based on dyadic resolutions of compact metric spaces. The conditional expectation of the intersection of two independent random Borel sets is investigated. An example based on an embedding of Sierpinski’s universal curve into the space of Borel sets is given. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Random Borel sets | es_ES |
dc.subject | Dyadic spaces | es_ES |
dc.subject | Sierpinski’s universal curve | es_ES |
dc.title | Random selection of Borel sets | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-08T11:52:49Z | |
dc.identifier.doi | 10.4995/agt.2010.1713 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Günther, B. (2010). Random selection of Borel sets. Applied General Topology. 11(2):135-158. https://doi.org/10.4995/agt.2010.1713 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2010.1713 | es_ES |
dc.description.upvformatpinicio | 135 | es_ES |
dc.description.upvformatpfin | 158 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 |