Mostrar el registro sencillo del ítem
dc.contributor.author | Vera Mendoza, Rigoberto | es_ES |
dc.date.accessioned | 2017-09-11T12:08:43Z | |
dc.date.available | 2017-09-11T12:08:43Z | |
dc.date.issued | 2011-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86970 | |
dc.description.abstract | [EN] In this paper the nonstandard theory of uniform topological spaces isapplied with two main objectives: (1) to give a nonstandard treatmentof Bernstein’s concept of p-compactness with additional results, (2) tointroduce three new concepts (p,q)-compactness, p-totally boundednessand p-completeness. I prove some facts about them and how these threeconcepts are related with p-compactness. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Monad | es_ES |
dc.subject | p-compact | es_ES |
dc.subject | p-totally bounded and p-complete space | es_ES |
dc.title | p-Compact, p-Bounded and p-Complete | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-11T11:50:04Z | |
dc.identifier.doi | 10.4995/agt.2011.1697 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Vera Mendoza, R. (2011). p-Compact, p-Bounded and p-Complete. Applied General Topology. 12(1):17-25. https://doi.org/10.4995/agt.2011.1697 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2011.1697 | es_ES |
dc.description.upvformatpinicio | 17 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | M. Davis, Applied Nonstandard Analysis, John Wiley NY, (1977). | es_ES |
dc.description.references | García-Ferreira, S. (1993). Three orderings on β (ω)⧹ω. Topology and its Applications, 50(3), 199-216. doi:10.1016/0166-8641(93)90021-5 | es_ES |
dc.description.references | Robinson, A. (1996). Non-standard Analysis. doi:10.1515/9781400884223 | es_ES |
dc.description.references | K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, (1976). | es_ES |