- -

p-Compact, p-Bounded and p-Complete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

p-Compact, p-Bounded and p-Complete

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vera Mendoza, Rigoberto es_ES
dc.date.accessioned 2017-09-11T12:08:43Z
dc.date.available 2017-09-11T12:08:43Z
dc.date.issued 2011-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86970
dc.description.abstract [EN] In this paper the nonstandard theory of uniform topological spaces isapplied with two main objectives: (1) to give a nonstandard treatmentof Bernstein’s concept of p-compactness with additional results, (2) tointroduce three new concepts (p,q)-compactness, p-totally boundednessand p-completeness. I prove some facts about them and how these threeconcepts are related with p-compactness. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Monad es_ES
dc.subject p-compact es_ES
dc.subject p-totally bounded and p-complete space es_ES
dc.title p-Compact, p-Bounded and p-Complete es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-11T11:50:04Z
dc.identifier.doi 10.4995/agt.2011.1697
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vera Mendoza, R. (2011). p-Compact, p-Bounded and p-Complete. Applied General Topology. 12(1):17-25. https://doi.org/10.4995/agt.2011.1697 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2011.1697 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references M. Davis, Applied Nonstandard Analysis, John Wiley NY, (1977). es_ES
dc.description.references García-Ferreira, S. (1993). Three orderings on β (ω)⧹ω. Topology and its Applications, 50(3), 199-216. doi:10.1016/0166-8641(93)90021-5 es_ES
dc.description.references Robinson, A. (1996). Non-standard Analysis. doi:10.1515/9781400884223 es_ES
dc.description.references K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, (1976). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem