Mostrar el registro sencillo del ítem
dc.contributor.author | Ayadi, Adlene | es_ES |
dc.date.accessioned | 2017-09-11T12:15:07Z | |
dc.date.available | 2017-09-11T12:15:07Z | |
dc.date.issued | 2011-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86974 | |
dc.description.abstract | [EN] We prove that the minimal number of matrices on Cn required to forma hypercyclic abelian semigroup on Cn is n+1. We also prove that theaction of any abelian semigroup finitely generated by matrices on Cnor Rn is never k-transitive for k 2. These answer questions raised byFeldman and Javaheri. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hypercyclic | es_ES |
dc.subject | Tuple of matrices | es_ES |
dc.subject | Semigroup | es_ES |
dc.subject | Subgroup | es_ES |
dc.subject | Dense orbit | es_ES |
dc.subject | Transitive | es_ES |
dc.subject | Semigroup action | es_ES |
dc.title | Hypercyclic abelian semigroup of matrices on Cn and Rn and k-transitivity (k ≥ 2) | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-11T11:49:52Z | |
dc.identifier.doi | 10.4995/agt.2011.1699 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ayadi, A. (2011). Hypercyclic abelian semigroup of matrices on Cn and Rn and k-transitivity (k ≥ 2). Applied General Topology. 12(1):35-39. https://doi.org/10.4995/agt.2011.1699 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2011.1699 | es_ES |
dc.description.upvformatpinicio | 35 | es_ES |
dc.description.upvformatpfin | 39 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 |