- -

Some remarks on stronger versions of the Boundary Problem for Banach spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Some remarks on stronger versions of the Boundary Problem for Banach spaces

Show simple item record

Files in this item

dc.contributor.author Hardtke, Jan-David es_ES
dc.date.accessioned 2017-09-11T12:23:58Z
dc.date.available 2017-09-11T12:23:58Z
dc.date.issued 2011-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86981
dc.description.abstract [EN] Let X be a real Banach space. A subset B of the dual unit sphere of X is said to be a boundary for X, if every element of X attains its norm on some functional in B. The well-known Boundary Problem originally posed by Godefroy asks whether a bounded subset of X which is compact in the topology of pointwise convergence on B is already weakly compact. This problem was recently solved by Pfitzner in the positive. In this note we collect some stronger versions of the solution to the Boundary Problem, most of which are restricted to special types of Banach spaces. We shall use the results and techniques of Pfitzner, Cascales et al., Moors and others. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Boundary es_ES
dc.subject Weak compactness es_ES
dc.subject Convex hull es_ES
dc.subject Extreme points es_ES
dc.subject e- weakly relatively compact sets es_ES
dc.subject e-interchangeable double limits es_ES
dc.title Some remarks on stronger versions of the Boundary Problem for Banach spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-11T11:50:10Z
dc.identifier.doi 10.4995/agt.2011.1702
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hardtke, J. (2011). Some remarks on stronger versions of the Boundary Problem for Banach spaces. Applied General Topology. 12(1):67-80. https://doi.org/10.4995/agt.2011.1702 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2011.1702 es_ES
dc.description.upvformatpinicio 67 es_ES
dc.description.upvformatpfin 80 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12
dc.description.issue 1
dc.identifier.eissn 1989-4147


This item appears in the following Collection(s)

Show simple item record