- -

On a type of generalized open sets

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On a type of generalized open sets

Show simple item record

Files in this item

dc.contributor.author Roy, Bishwambhar es_ES
dc.date.accessioned 2017-09-12T12:25:33Z
dc.date.available 2017-09-12T12:25:33Z
dc.date.issued 2011-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/87095
dc.description.abstract [EN] In this paper, a new class of sets called μ-generalized closed (briefly μg-closed) sets in generalized topological spaces are introduced and studied. The class of all μg-closed sets is strictly larger than the class of all μ-closed sets (in the sense of Á. Császár). Furthermore, g-closed sets (in the sense of N. Levine) is a special type of μg-closed sets in a topological space. Some of their properties are investigated here. Finally, some characterizations of μ-regular and μ-normal spaces have been given. es_ES
dc.description.sponsorship The author acknowledges the financial support from UGC, New Delhi.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject μ-open set es_ES
dc.subject μg-closed set es_ES
dc.subject μ-regular space es_ES
dc.subject μ-normal space es_ES
dc.title On a type of generalized open sets es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-12T11:38:49Z
dc.identifier.doi 10.4995/agt.2011.1649
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Roy, B. (2011). On a type of generalized open sets. Applied General Topology. 12(2):163-173. doi:10.4995/agt.2011.1649. es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2011.1649 es_ES
dc.description.upvformatpinicio 163 es_ES
dc.description.upvformatpfin 173 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder University Grants Commission, India (UGC)
dc.relation.references M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, B-open sets and B-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90. es_ES
dc.relation.references S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21, no. 8 (1990), 717–719. es_ES
dc.relation.references Beceren, Y., & Noiri, T. (2008). Some functions defined by semi-open and β-open sets. Chaos, Solitons & Fractals, 36(5), 1225-1231. doi:10.1016/j.chaos.2006.07.057 es_ES
dc.relation.references P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), 376–382. es_ES
dc.relation.references M. Caldas, T. Fukutake, S. Jafari and T. Noiri, Some applications of d-preopen sets in topological spaces, Bull. Inst. Math. Acad. Sinica 33, no. 3 (2005), 261–275. es_ES
dc.relation.references Caldas, M., Georgiou, D. N., & Jafari, S. (2003). Characterizations of low separation axioms via \alpha-open sets and \alpha-closure operator. Boletim da Sociedade Paranaense de Matemática, 21(1-2). doi:10.5269/bspm.v21i1-2.7509 es_ES
dc.relation.references M. C. Caldas and S. Jafari, On d D-sets and associated weak separation axioms, Bull. Malaysian Math. Soc. 25 (2002), 173–185. es_ES
dc.relation.references Császár, Á. (2007). Normal generalized topologies. Acta Mathematica Hungarica, 115(4), 309-313. doi:10.1007/s10474-007-5249-9 es_ES
dc.relation.references Császár, Á. (2007). Normal generalized topologies. Acta Mathematica Hungarica, 115(4), 309-313. doi:10.1007/s10474-007-5249-9 es_ES
dc.relation.references Császár, Á. (2007). Normal generalized topologies. Acta Mathematica Hungarica, 115(4), 309-313. doi:10.1007/s10474-007-5249-9 es_ES
dc.relation.references Császár, Á. (2007). Normal generalized topologies. Acta Mathematica Hungarica, 115(4), 309-313. doi:10.1007/s10474-007-5249-9 es_ES
dc.relation.references J. Dontchev, I. Arokiarani and K. Balachandran, On generalized d-closed sets and almost weakly Hausdroff spaces, Questions Answers Gen. Topology 18, no. 1 (2000), 17–30. es_ES
dc.relation.references C. Dorsett, Semi normal spaces, Kyungpook Math. J. 25(1985), 173–180. es_ES
dc.relation.references C. Dorsett, Semi regular spaces, Soochow J. Math. 8 (1982), 45–53. es_ES
dc.relation.references J. Dugunji, Topology, Allyn and Bacon, Boston, 1966. es_ES
dc.relation.references E. Ekici, On y-normal spaces, Bull. Math. Soc. Sci. Math. Roumanie 50 (98) (2007), 259–272. es_ES
dc.relation.references Ekici, E. (2007). On almost πgp-continuous functions. Chaos, Solitons & Fractals, 32(5), 1935-1944. doi:10.1016/j.chaos.2005.12.056 es_ES
dc.relation.references S. Jafari and T. Noiri, On B-quasi irresolute functions, Mem. Fac. Sci. Kochi Univ.(Math.) 21 (2000), 53–62. es_ES
dc.relation.references A. Kar and P. Bhattacharyya, Bitopological a-compact spaces, Riv. Mat. Parma 7, no. 1 (2002), 159–176. es_ES
dc.relation.references A. Keskin and T. Noiri, On bD-sets and associated separation axioms, Bull. Iran. Math. Soc. 35, no. 1 (2009), 179–198. es_ES
dc.relation.references Levine, N. (1963). Semi-Open Sets and Semi-Continuity in Topological Spaces. The American Mathematical Monthly, 70(1), 36. doi:10.2307/2312781 es_ES
dc.relation.references Levine, N. (1963). Semi-Open Sets and Semi-Continuity in Topological Spaces. The American Mathematical Monthly, 70(1), 36. doi:10.2307/2312781 es_ES
dc.relation.references S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat. 10 (30) (1975), 347–350. es_ES
dc.relation.references H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 17 (1996), 33–42. es_ES
dc.relation.references H. Maki, J. Umehara and K. Yamamura, Characterizations of T1/2-spaces using generalized v-sets, Indian J. Pure Appl. Math. 19, no. 7 (1998), 634–640. es_ES
dc.relation.references H. Maki, R. Devi and K. Balachandran, Associated topologies of generalizrd a-closed sets and a-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15 (1994), 51–63. es_ES
dc.relation.references H. Maki, R. Devi and K. Balachandran, Generalized a-closed sets in topology, Bull. Fukuoka Univ. Ed., Part-III 42 (1993), 13–21. es_ES
dc.relation.references A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53. es_ES
dc.relation.references Noiri, T. (1994). Semi-normal spaces and some functions. Acta Mathematica Hungarica, 65(3), 305-311. doi:10.1007/bf01875158 es_ES
dc.relation.references M. C. Pal and P. Bhattacharyya, Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc. 19 (1996), 63–75. es_ES
dc.relation.references Park, J. H., Song, D. S., & Saadati, R. (2007). On generalized δ-semiclosed sets in topological spaces. Chaos, Solitons & Fractals, 33(4), 1329-1338. doi:10.1016/j.chaos.2006.01.086 es_ES
dc.relation.references S. Raychaudhuri and M. N. Mukherjee, On d-almost continuity and d-preopen sets, Bull. Inst. Math. Acad. Sinica 21 (1993), 357–366. es_ES
dc.relation.references P. Sivagami and D. Sivaraj, W and V- sets of generalized topologies, Scientia Magna 5, no. 1 (2009), 83–93. es_ES
dc.relation.references N. V. Velicko, H-closed topological spaces, Mat. Sb. 70 (1966), 98–112. es_ES


This item appears in the following Collection(s)

Show simple item record